基于时间反向传播训练的四元数递归神经网络的系统辨识

Kazuhiko Takahashi, Sora Shibata, M. Hashimoto
{"title":"基于时间反向传播训练的四元数递归神经网络的系统辨识","authors":"Kazuhiko Takahashi, Sora Shibata, M. Hashimoto","doi":"10.1109/anzcc53563.2021.9628201","DOIUrl":null,"url":null,"abstract":"This study investigates the learning capability of a quaternion recurrent neural network that is trained based on a backpropagation through time algorithm extended to quaternion numbers. Computational experiments to identify nonlinear systems, e.g. a three–dimensional chaotic system and discrete–time plant, were performed, and the simulation results confirmed the feasibility of using the quaternion recurrent neural network for a control system application.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on System Identification Using a Quaternion Recurrent Neural Network Trained by Backpropagation through Time\",\"authors\":\"Kazuhiko Takahashi, Sora Shibata, M. Hashimoto\",\"doi\":\"10.1109/anzcc53563.2021.9628201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the learning capability of a quaternion recurrent neural network that is trained based on a backpropagation through time algorithm extended to quaternion numbers. Computational experiments to identify nonlinear systems, e.g. a three–dimensional chaotic system and discrete–time plant, were performed, and the simulation results confirmed the feasibility of using the quaternion recurrent neural network for a control system application.\",\"PeriodicalId\":246687,\"journal\":{\"name\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/anzcc53563.2021.9628201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/anzcc53563.2021.9628201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了四元数递归神经网络的学习能力,该网络是基于扩展到四元数的时间反向传播算法进行训练的。通过计算实验对三维混沌系统和离散时间对象等非线性系统进行了辨识,仿真结果证实了将四元数递归神经网络应用于控制系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on System Identification Using a Quaternion Recurrent Neural Network Trained by Backpropagation through Time
This study investigates the learning capability of a quaternion recurrent neural network that is trained based on a backpropagation through time algorithm extended to quaternion numbers. Computational experiments to identify nonlinear systems, e.g. a three–dimensional chaotic system and discrete–time plant, were performed, and the simulation results confirmed the feasibility of using the quaternion recurrent neural network for a control system application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信