随机单元测试生成与mut_aware序列推荐

Wujie Zheng, Qirun Zhang, Michael R. Lyu, Tao Xie
{"title":"随机单元测试生成与mut_aware序列推荐","authors":"Wujie Zheng, Qirun Zhang, Michael R. Lyu, Tao Xie","doi":"10.1145/1858996.1859054","DOIUrl":null,"url":null,"abstract":"A key component of automated object-oriented unit-test generation is to find method-call sequences that generate desired inputs of a method under test (MUT). Previous work cannot find desired sequences effectively due to the large search space of possible sequences. To address this issue, we present a MUT-aware sequence recommendation approach called RecGen to improve the effectiveness of random object-oriented unit-test generation. Unlike existing random testing approaches that select sequences without considering how a MUT may use inputs generated from sequences, RecGen analyzes object fields accessed by a MUT and recommends a short sequence that mutates these fields. In addition, for MUTs whose test generation keeps failing, RecGen recommends a set of sequences to cover all the methods that mutate object fields accessed by the MUT. This technique further improves the chance of generating desired inputs. We have implemented RecGen and evaluated it on three libraries. Evaluation results show that RecGen improves code coverage over previous random testing tools.","PeriodicalId":341489,"journal":{"name":"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Random unit-test generation with MUT-aware sequence recommendation\",\"authors\":\"Wujie Zheng, Qirun Zhang, Michael R. Lyu, Tao Xie\",\"doi\":\"10.1145/1858996.1859054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key component of automated object-oriented unit-test generation is to find method-call sequences that generate desired inputs of a method under test (MUT). Previous work cannot find desired sequences effectively due to the large search space of possible sequences. To address this issue, we present a MUT-aware sequence recommendation approach called RecGen to improve the effectiveness of random object-oriented unit-test generation. Unlike existing random testing approaches that select sequences without considering how a MUT may use inputs generated from sequences, RecGen analyzes object fields accessed by a MUT and recommends a short sequence that mutates these fields. In addition, for MUTs whose test generation keeps failing, RecGen recommends a set of sequences to cover all the methods that mutate object fields accessed by the MUT. This technique further improves the chance of generating desired inputs. We have implemented RecGen and evaluated it on three libraries. Evaluation results show that RecGen improves code coverage over previous random testing tools.\",\"PeriodicalId\":341489,\"journal\":{\"name\":\"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1858996.1859054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1858996.1859054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

自动化的面向对象单元测试生成的一个关键组件是找到生成被测方法所需输入的方法调用序列。以往的工作由于可能序列的搜索空间大,不能有效地找到想要的序列。为了解决这个问题,我们提出了一种称为RecGen的mutt感知序列推荐方法,以提高随机面向对象单元测试生成的有效性。现有的随机测试方法在选择序列时不考虑MUT如何使用从序列生成的输入,而RecGen分析MUT访问的对象字段,并推荐一个短序列来改变这些字段。此外,对于测试生成不断失败的MUT, RecGen建议使用一组序列来覆盖所有改变MUT访问的对象字段的方法。这种技术进一步提高了生成所需输入的机会。我们已经在三个库上实现了RecGen并对其进行了评估。评估结果表明,RecGen比以前的随机测试工具提高了代码覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random unit-test generation with MUT-aware sequence recommendation
A key component of automated object-oriented unit-test generation is to find method-call sequences that generate desired inputs of a method under test (MUT). Previous work cannot find desired sequences effectively due to the large search space of possible sequences. To address this issue, we present a MUT-aware sequence recommendation approach called RecGen to improve the effectiveness of random object-oriented unit-test generation. Unlike existing random testing approaches that select sequences without considering how a MUT may use inputs generated from sequences, RecGen analyzes object fields accessed by a MUT and recommends a short sequence that mutates these fields. In addition, for MUTs whose test generation keeps failing, RecGen recommends a set of sequences to cover all the methods that mutate object fields accessed by the MUT. This technique further improves the chance of generating desired inputs. We have implemented RecGen and evaluated it on three libraries. Evaluation results show that RecGen improves code coverage over previous random testing tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信