复流形退化上的有限能量度量空间

R'emi Reboulet
{"title":"复流形退化上的有限能量度量空间","authors":"R'emi Reboulet","doi":"10.5802/jep.229","DOIUrl":null,"url":null,"abstract":"Given a degeneration of compact projective complex manifolds $X$ over the punctured disc, with meromorphic singularities, and a relatively ample line bundle $L$ on $X$, we study spaces of plurisubharmonic metrics on $L$, with particular focus on (relative) finite-energy conditions. We endow the space $\\hat \\cE^1(L)$ of relatively maximal, relative finite-energy metrics with a $d_1$-type distance given by the Lelong number at zero of the collection of fibrewise Darvas $d_1$-distances. We show that this metric structure is complete and geodesic. Seeing $X$ and $L$ as schemes $X_\\K$, $L_\\K$ over the discretely-valued field $\\K=\\mathbb{C}((t))$ of complex Laurent series, we show that the space $\\cE^1(L_\\K\\an)$ of non-Archimedean finite-energy metrics over $L_\\K\\an$ embeds isometrically and geodesically into $\\hat \\cE^1(L)$, and characterize its image. This generalizes previous work of Berman-Boucksom-Jonsson, treating the trivially-valued case. We investigate consequences regarding convexity of non-Archimedean functionals.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The space of finite-energy metrics over a degeneration of complex manifolds\",\"authors\":\"R'emi Reboulet\",\"doi\":\"10.5802/jep.229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a degeneration of compact projective complex manifolds $X$ over the punctured disc, with meromorphic singularities, and a relatively ample line bundle $L$ on $X$, we study spaces of plurisubharmonic metrics on $L$, with particular focus on (relative) finite-energy conditions. We endow the space $\\\\hat \\\\cE^1(L)$ of relatively maximal, relative finite-energy metrics with a $d_1$-type distance given by the Lelong number at zero of the collection of fibrewise Darvas $d_1$-distances. We show that this metric structure is complete and geodesic. Seeing $X$ and $L$ as schemes $X_\\\\K$, $L_\\\\K$ over the discretely-valued field $\\\\K=\\\\mathbb{C}((t))$ of complex Laurent series, we show that the space $\\\\cE^1(L_\\\\K\\\\an)$ of non-Archimedean finite-energy metrics over $L_\\\\K\\\\an$ embeds isometrically and geodesically into $\\\\hat \\\\cE^1(L)$, and characterize its image. This generalizes previous work of Berman-Boucksom-Jonsson, treating the trivially-valued case. We investigate consequences regarding convexity of non-Archimedean functionals.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给定穿孔盘上具有亚纯奇点的紧射复流形$X$的退化,以及$X$上相对充裕的线束$L$,我们研究了$L$上的多次谐波度量空间,特别关注了(相对)有限能量条件。我们赋予空间$ $ hat $ $ cE^1(L)$的相对最大的,相对有限能量的度量$ $d_1$型的距离由纤维Darvas $d_1$-距离集合在零处的Lelong数给出。我们证明了这个度量结构是完备的和测地线的。将$X$和$L$作为复洛朗级数离散值域$\K=\mathbb{C}((t))$上的$X_\K$, $L_\K$方案,我们证明了$L_\K\an$上的非阿基米德有限能量度量空间$\cE^1(L_\K\an)$等距和测地嵌入到$\hat \cE^1(L)$中,并刻画了它的象。这概括了Berman-Boucksom-Jonsson先前的工作,处理了平凡值的情况。我们研究关于非阿基米德泛函的凸性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The space of finite-energy metrics over a degeneration of complex manifolds
Given a degeneration of compact projective complex manifolds $X$ over the punctured disc, with meromorphic singularities, and a relatively ample line bundle $L$ on $X$, we study spaces of plurisubharmonic metrics on $L$, with particular focus on (relative) finite-energy conditions. We endow the space $\hat \cE^1(L)$ of relatively maximal, relative finite-energy metrics with a $d_1$-type distance given by the Lelong number at zero of the collection of fibrewise Darvas $d_1$-distances. We show that this metric structure is complete and geodesic. Seeing $X$ and $L$ as schemes $X_\K$, $L_\K$ over the discretely-valued field $\K=\mathbb{C}((t))$ of complex Laurent series, we show that the space $\cE^1(L_\K\an)$ of non-Archimedean finite-energy metrics over $L_\K\an$ embeds isometrically and geodesically into $\hat \cE^1(L)$, and characterize its image. This generalizes previous work of Berman-Boucksom-Jonsson, treating the trivially-valued case. We investigate consequences regarding convexity of non-Archimedean functionals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信