基于上下文感知注意力的POI推荐数据增强

Yang Li, Yadan Luo, Zheng Zhang, S. Sadiq, Peng Cui
{"title":"基于上下文感知注意力的POI推荐数据增强","authors":"Yang Li, Yadan Luo, Zheng Zhang, S. Sadiq, Peng Cui","doi":"10.1109/ICDEW.2019.00-14","DOIUrl":null,"url":null,"abstract":"With the rapid growth of location-based social networks (LBSNs), Point-Of-Interest (POI) recommendation has been broadly studied in this decade. Recently, the next POI recommendation, a natural extension of POI recommendation, has attracted much attention. It aims at suggesting the next POI to a user in spatial and temporal context, which is a practical yet challenging task in various applications. Existing approaches mainly model the spatial and temporal information, and memorise historical patterns through the user's trajectories for the recommendation. However, they suffer from the negative impact of missing and irregular check-in data, which significantly influences model performance. In this paper, we propose an attention-based sequence-to-sequence generative model, namely POI-Augmentation Seq2Seq (PA-Seq2Seq), to address the sparsity of training set by making check-in records to be evenly-spaced. Specifically, the encoder summarises each checkin sequence and the decoder predicts the possible missing checkins based on the encoded information. In order to learn timeaware correlation among user history, we employ local attention mechanism to help the decoder focus on a specific range of context information when predicting a certain missing check-in point. Extensive experiments have been conducted on two realworld check-in datasets, Gowalla and Brightkite, for performance and effectiveness evaluation.","PeriodicalId":186190,"journal":{"name":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Context-Aware Attention-Based Data Augmentation for POI Recommendation\",\"authors\":\"Yang Li, Yadan Luo, Zheng Zhang, S. Sadiq, Peng Cui\",\"doi\":\"10.1109/ICDEW.2019.00-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of location-based social networks (LBSNs), Point-Of-Interest (POI) recommendation has been broadly studied in this decade. Recently, the next POI recommendation, a natural extension of POI recommendation, has attracted much attention. It aims at suggesting the next POI to a user in spatial and temporal context, which is a practical yet challenging task in various applications. Existing approaches mainly model the spatial and temporal information, and memorise historical patterns through the user's trajectories for the recommendation. However, they suffer from the negative impact of missing and irregular check-in data, which significantly influences model performance. In this paper, we propose an attention-based sequence-to-sequence generative model, namely POI-Augmentation Seq2Seq (PA-Seq2Seq), to address the sparsity of training set by making check-in records to be evenly-spaced. Specifically, the encoder summarises each checkin sequence and the decoder predicts the possible missing checkins based on the encoded information. In order to learn timeaware correlation among user history, we employ local attention mechanism to help the decoder focus on a specific range of context information when predicting a certain missing check-in point. Extensive experiments have been conducted on two realworld check-in datasets, Gowalla and Brightkite, for performance and effectiveness evaluation.\",\"PeriodicalId\":186190,\"journal\":{\"name\":\"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW.2019.00-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2019.00-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

随着基于位置的社交网络(LBSNs)的快速发展,兴趣点(POI)推荐在近十年得到了广泛的研究。最近,作为POI推荐的自然延伸,下一个POI推荐引起了人们的广泛关注。它的目的是在空间和时间背景下向用户建议下一个POI,这在各种应用中是一项实际但具有挑战性的任务。现有的方法主要是对空间和时间信息建模,并通过用户的轨迹记忆历史模式来进行推荐。然而,它们受到缺失和不规则签入数据的负面影响,这严重影响了模型的性能。在本文中,我们提出了一个基于注意力的序列到序列生成模型,即POI-Augmentation Seq2Seq (PA-Seq2Seq),通过使签入记录均匀间隔来解决训练集的稀疏性问题。具体来说,编码器总结每个签入序列,解码器根据编码信息预测可能缺失的签入。为了学习用户历史之间的时间感知相关性,我们采用局部注意机制来帮助解码器在预测某个缺失的签入点时关注特定范围的上下文信息。在Gowalla和Brightkite两个现实世界的签入数据集上进行了大量的实验,以进行性能和有效性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-Aware Attention-Based Data Augmentation for POI Recommendation
With the rapid growth of location-based social networks (LBSNs), Point-Of-Interest (POI) recommendation has been broadly studied in this decade. Recently, the next POI recommendation, a natural extension of POI recommendation, has attracted much attention. It aims at suggesting the next POI to a user in spatial and temporal context, which is a practical yet challenging task in various applications. Existing approaches mainly model the spatial and temporal information, and memorise historical patterns through the user's trajectories for the recommendation. However, they suffer from the negative impact of missing and irregular check-in data, which significantly influences model performance. In this paper, we propose an attention-based sequence-to-sequence generative model, namely POI-Augmentation Seq2Seq (PA-Seq2Seq), to address the sparsity of training set by making check-in records to be evenly-spaced. Specifically, the encoder summarises each checkin sequence and the decoder predicts the possible missing checkins based on the encoded information. In order to learn timeaware correlation among user history, we employ local attention mechanism to help the decoder focus on a specific range of context information when predicting a certain missing check-in point. Extensive experiments have been conducted on two realworld check-in datasets, Gowalla and Brightkite, for performance and effectiveness evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信