具有聚类和排序的循环微积分系统

Q1 Mathematics
Wenyan Xu
{"title":"具有聚类和排序的循环微积分系统","authors":"Wenyan Xu","doi":"10.1016/j.jal.2016.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>Cirquent calculus is a new proof-theoretic and semantic approach introduced by G. Japaridze for the needs of his theory of computability logic (CoL). The earlier article “From formulas to cirquents in computability logic” by Japaridze generalized formulas in CoL to circuit-style structures termed cirquents. It showed that, through cirquents with what are termed clustering and ranking, one can capture, refine and generalize independence-friendly (IF) logic. Specifically, the approach allows us to account for independence from propositional connectives in the same spirit as IF logic accounts for independence from quantifiers. Japaridze's treatment of IF logic, however, was purely semantical, and no deductive system was proposed. The present paper syntactically constructs a cirquent calculus system with clustering and ranking, sound and complete w.r.t. the propositional fragment of cirquent-based semantics. Such a system captures the propositional version of what is called extended IF logic, thus being an axiomatization of a nontrivial fragment of that logic.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"16 ","pages":"Pages 37-49"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.04.003","citationCount":"7","resultStr":"{\"title\":\"A cirquent calculus system with clustering and ranking\",\"authors\":\"Wenyan Xu\",\"doi\":\"10.1016/j.jal.2016.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cirquent calculus is a new proof-theoretic and semantic approach introduced by G. Japaridze for the needs of his theory of computability logic (CoL). The earlier article “From formulas to cirquents in computability logic” by Japaridze generalized formulas in CoL to circuit-style structures termed cirquents. It showed that, through cirquents with what are termed clustering and ranking, one can capture, refine and generalize independence-friendly (IF) logic. Specifically, the approach allows us to account for independence from propositional connectives in the same spirit as IF logic accounts for independence from quantifiers. Japaridze's treatment of IF logic, however, was purely semantical, and no deductive system was proposed. The present paper syntactically constructs a cirquent calculus system with clustering and ranking, sound and complete w.r.t. the propositional fragment of cirquent-based semantics. Such a system captures the propositional version of what is called extended IF logic, thus being an axiomatization of a nontrivial fragment of that logic.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"16 \",\"pages\":\"Pages 37-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.04.003\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868316300131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316300131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

摘要

循环演算是G. Japaridze根据其可计算逻辑理论的需要提出的一种新的证明理论和语义方法。先前的文章“从公式到可计算逻辑中的环流”将广义公式转化为称为环流的电路式结构。它表明,通过所谓的聚类和排序,人们可以捕获、提炼和概括独立友好(IF)逻辑。具体来说,该方法允许我们以与IF逻辑解释独立于量词相同的精神来解释独立于命题连接词。然而,Japaridze对中频逻辑的处理是纯语义学的,没有提出演绎系统。本文利用基于循环语义的命题片段,从句法上构建了一个聚类排序、健全完备的循环演算系统。这样的系统捕获了所谓的扩展IF逻辑的命题版本,从而成为该逻辑的非平凡片段的公理化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cirquent calculus system with clustering and ranking

Cirquent calculus is a new proof-theoretic and semantic approach introduced by G. Japaridze for the needs of his theory of computability logic (CoL). The earlier article “From formulas to cirquents in computability logic” by Japaridze generalized formulas in CoL to circuit-style structures termed cirquents. It showed that, through cirquents with what are termed clustering and ranking, one can capture, refine and generalize independence-friendly (IF) logic. Specifically, the approach allows us to account for independence from propositional connectives in the same spirit as IF logic accounts for independence from quantifiers. Japaridze's treatment of IF logic, however, was purely semantical, and no deductive system was proposed. The present paper syntactically constructs a cirquent calculus system with clustering and ranking, sound and complete w.r.t. the propositional fragment of cirquent-based semantics. Such a system captures the propositional version of what is called extended IF logic, thus being an axiomatization of a nontrivial fragment of that logic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信