{"title":"推特与引申文本的道德立场识别与极性分类","authors":"W. Santos, Ivandré Paraboni","doi":"10.26615/978-954-452-056-4_123","DOIUrl":null,"url":null,"abstract":"We introduce a labelled corpus of stances about moral issues for the Brazilian Portuguese language, and present reference results for both the stance recognition and polarity classification tasks. The corpus is built from Twitter and further expanded with data elicited through crowd sourcing and labelled by their own authors. Put together, the corpus and reference results are expected to be taken as a baseline for further studies in the field of stance recognition and polarity classification from text.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Moral Stance Recognition and Polarity Classification from Twitter and Elicited Text\",\"authors\":\"W. Santos, Ivandré Paraboni\",\"doi\":\"10.26615/978-954-452-056-4_123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a labelled corpus of stances about moral issues for the Brazilian Portuguese language, and present reference results for both the stance recognition and polarity classification tasks. The corpus is built from Twitter and further expanded with data elicited through crowd sourcing and labelled by their own authors. Put together, the corpus and reference results are expected to be taken as a baseline for further studies in the field of stance recognition and polarity classification from text.\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-056-4_123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-056-4_123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Moral Stance Recognition and Polarity Classification from Twitter and Elicited Text
We introduce a labelled corpus of stances about moral issues for the Brazilian Portuguese language, and present reference results for both the stance recognition and polarity classification tasks. The corpus is built from Twitter and further expanded with data elicited through crowd sourcing and labelled by their own authors. Put together, the corpus and reference results are expected to be taken as a baseline for further studies in the field of stance recognition and polarity classification from text.