{"title":"用于教育和原型设计的混合开源和专有EDA共享:邀请论文","authors":"A. Kahng","doi":"10.1145/3508352.3561378","DOIUrl":null,"url":null,"abstract":"In recent years, several open-source projects have shown potential to serve a future technology commons for EDA and design prototyping. This paper examines how open-source and proprietary EDA technologies will inevitably take on complementary roles within a future technology commons. Proprietary EDA technologies offer numerous benefits that will endure, including (i) exceptional technology and engineering; (ii) ever-increasing importance in design-based equivalent scaling and the overall semiconductor value chain; and (iii) well-established commercial and partner relationships. On the other hand, proprietary EDA technologies face challenges that will also endure, including (i) inability to pursue directions such as massive leverage of cloud compute, extreme reduction of turnaround times, or \"free tools\"; and (ii) difficulty in evolving and addressing new applications and markets. By contrast, open-source EDA technologies offer benefits that include (i) the capability to serve as a friction-free, democratized platform for education and future workforce development (i.e., as a platform for EDA research, and as a means of teaching / training both designers and EDA developers with public code); and (ii) addressing the needs of underserved, non-enterprise account markets (e.g., older nodes, research flows, cost-sensitive IoT, new devices and integrations, system-design-technology pathfinding). This said, open-source will always face challenges such as sustainability, governance, and how to achieve critical mass and critical quality. The paper will conclude with key directions and synergies for open-source and proprietary EDA within an EDA Commons for education and prototyping.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mixed Open-Source and Proprietary EDA Commons for Education and Prototyping : Invited Paper\",\"authors\":\"A. Kahng\",\"doi\":\"10.1145/3508352.3561378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, several open-source projects have shown potential to serve a future technology commons for EDA and design prototyping. This paper examines how open-source and proprietary EDA technologies will inevitably take on complementary roles within a future technology commons. Proprietary EDA technologies offer numerous benefits that will endure, including (i) exceptional technology and engineering; (ii) ever-increasing importance in design-based equivalent scaling and the overall semiconductor value chain; and (iii) well-established commercial and partner relationships. On the other hand, proprietary EDA technologies face challenges that will also endure, including (i) inability to pursue directions such as massive leverage of cloud compute, extreme reduction of turnaround times, or \\\"free tools\\\"; and (ii) difficulty in evolving and addressing new applications and markets. By contrast, open-source EDA technologies offer benefits that include (i) the capability to serve as a friction-free, democratized platform for education and future workforce development (i.e., as a platform for EDA research, and as a means of teaching / training both designers and EDA developers with public code); and (ii) addressing the needs of underserved, non-enterprise account markets (e.g., older nodes, research flows, cost-sensitive IoT, new devices and integrations, system-design-technology pathfinding). This said, open-source will always face challenges such as sustainability, governance, and how to achieve critical mass and critical quality. The paper will conclude with key directions and synergies for open-source and proprietary EDA within an EDA Commons for education and prototyping.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3561378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3561378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Mixed Open-Source and Proprietary EDA Commons for Education and Prototyping : Invited Paper
In recent years, several open-source projects have shown potential to serve a future technology commons for EDA and design prototyping. This paper examines how open-source and proprietary EDA technologies will inevitably take on complementary roles within a future technology commons. Proprietary EDA technologies offer numerous benefits that will endure, including (i) exceptional technology and engineering; (ii) ever-increasing importance in design-based equivalent scaling and the overall semiconductor value chain; and (iii) well-established commercial and partner relationships. On the other hand, proprietary EDA technologies face challenges that will also endure, including (i) inability to pursue directions such as massive leverage of cloud compute, extreme reduction of turnaround times, or "free tools"; and (ii) difficulty in evolving and addressing new applications and markets. By contrast, open-source EDA technologies offer benefits that include (i) the capability to serve as a friction-free, democratized platform for education and future workforce development (i.e., as a platform for EDA research, and as a means of teaching / training both designers and EDA developers with public code); and (ii) addressing the needs of underserved, non-enterprise account markets (e.g., older nodes, research flows, cost-sensitive IoT, new devices and integrations, system-design-technology pathfinding). This said, open-source will always face challenges such as sustainability, governance, and how to achieve critical mass and critical quality. The paper will conclude with key directions and synergies for open-source and proprietary EDA within an EDA Commons for education and prototyping.