用泛函变量法研究非线性演化方程

M. Eslami, M. Mirzazadeh
{"title":"用泛函变量法研究非线性演化方程","authors":"M. Eslami, M. Mirzazadeh","doi":"10.2478/s13531-013-0104-y","DOIUrl":null,"url":null,"abstract":"The functional variable method is a powerful solution method for obtaining exact solutions of nonlinear evolution equations. This method presents a wider applicability for handling nonlinear wave equations. In this paper, the functional variable method is used to construct exact solutions of Davey-Stewartson equation, generalized Zakharov equation, K(m, n) equation with generalized evolution term, (2 + 1)-dimensional long-wave-short-wave resonance interaction equation and nonlinear Schrödinger equation with power law nonlinearity. The obtained solutions include solitary wave solutions, periodic wave solutions.","PeriodicalId":407983,"journal":{"name":"Central European Journal of Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Functional variable method to study nonlinear evolution equations\",\"authors\":\"M. Eslami, M. Mirzazadeh\",\"doi\":\"10.2478/s13531-013-0104-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The functional variable method is a powerful solution method for obtaining exact solutions of nonlinear evolution equations. This method presents a wider applicability for handling nonlinear wave equations. In this paper, the functional variable method is used to construct exact solutions of Davey-Stewartson equation, generalized Zakharov equation, K(m, n) equation with generalized evolution term, (2 + 1)-dimensional long-wave-short-wave resonance interaction equation and nonlinear Schrödinger equation with power law nonlinearity. The obtained solutions include solitary wave solutions, periodic wave solutions.\",\"PeriodicalId\":407983,\"journal\":{\"name\":\"Central European Journal of Engineering\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s13531-013-0104-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s13531-013-0104-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

泛函变量法是求解非线性演化方程精确解的一种有效方法。该方法在处理非线性波动方程时具有更广泛的适用性。本文利用泛函变量法构造了具有广义演化项的Davey-Stewartson方程、广义Zakharov方程、K(m, n)方程、(2 + 1)维长波-短波共振相互作用方程和具有幂律非线性的非线性Schrödinger方程的精确解。得到的解包括孤波解、周期波解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional variable method to study nonlinear evolution equations
The functional variable method is a powerful solution method for obtaining exact solutions of nonlinear evolution equations. This method presents a wider applicability for handling nonlinear wave equations. In this paper, the functional variable method is used to construct exact solutions of Davey-Stewartson equation, generalized Zakharov equation, K(m, n) equation with generalized evolution term, (2 + 1)-dimensional long-wave-short-wave resonance interaction equation and nonlinear Schrödinger equation with power law nonlinearity. The obtained solutions include solitary wave solutions, periodic wave solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信