通过使用同步现场数据改进动态微电网建模

RJ Erasmus, A. Rens, G. V. Schoor, K. Uren
{"title":"通过使用同步现场数据改进动态微电网建模","authors":"RJ Erasmus, A. Rens, G. V. Schoor, K. Uren","doi":"10.1109/ICHQP46026.2020.9177929","DOIUrl":null,"url":null,"abstract":"Simulation during the design and operation of microgrids should include dynamic phenomena that would be a result of the unpredictable variation in renewable generation and loading. Detailed modelling of different components is constrained when using simplified models from suppliers. Accurate prediction of system response is needed to maintain voltage stability within a microgrid during islanded conditions and when grid-connected, between interconnected microgrids. Distributed energy resources in a microgrid are constituted by local generation (mostly renewable and standby diesel), a grid connection and increasingly, local storage (most commonly batteries). Synchronised field data is used to validate, and improve, the results obtained from a microgrid simulation model during both steady-state and transient conditions. This microgrid simulation approach makes use of MATLAB™ and DIgSILENT™, and is shown to be useful in designing for predictable performance. With field representative results, the model developed in DIgSILENT™ can be used as a development tool allowing various control strategies and component configurations to be tested.","PeriodicalId":436720,"journal":{"name":"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving dynamic microgrid modelling through the use of synchronised field data\",\"authors\":\"RJ Erasmus, A. Rens, G. V. Schoor, K. Uren\",\"doi\":\"10.1109/ICHQP46026.2020.9177929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation during the design and operation of microgrids should include dynamic phenomena that would be a result of the unpredictable variation in renewable generation and loading. Detailed modelling of different components is constrained when using simplified models from suppliers. Accurate prediction of system response is needed to maintain voltage stability within a microgrid during islanded conditions and when grid-connected, between interconnected microgrids. Distributed energy resources in a microgrid are constituted by local generation (mostly renewable and standby diesel), a grid connection and increasingly, local storage (most commonly batteries). Synchronised field data is used to validate, and improve, the results obtained from a microgrid simulation model during both steady-state and transient conditions. This microgrid simulation approach makes use of MATLAB™ and DIgSILENT™, and is shown to be useful in designing for predictable performance. With field representative results, the model developed in DIgSILENT™ can be used as a development tool allowing various control strategies and component configurations to be tested.\",\"PeriodicalId\":436720,\"journal\":{\"name\":\"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHQP46026.2020.9177929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHQP46026.2020.9177929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微电网设计和运行过程中的模拟应包括可再生能源发电和负荷不可预测变化的动态现象。当使用来自供应商的简化模型时,不同组件的详细建模受到约束。在孤岛状态下、并网时、互联微电网之间,需要对系统响应进行准确的预测,以保持微电网内的电压稳定性。微电网中的分布式能源由本地发电(主要是可再生能源和备用柴油)、电网连接以及越来越多的本地存储(最常见的是电池)组成。同步现场数据用于验证和改进稳态和瞬态条件下微电网仿真模型得到的结果。这种微电网仿真方法利用了MATLAB™和DIgSILENT™,并被证明在设计可预测的性能方面是有用的。有了具有现场代表性的结果,在DIgSILENT™中开发的模型可以用作开发工具,允许测试各种控制策略和组件配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving dynamic microgrid modelling through the use of synchronised field data
Simulation during the design and operation of microgrids should include dynamic phenomena that would be a result of the unpredictable variation in renewable generation and loading. Detailed modelling of different components is constrained when using simplified models from suppliers. Accurate prediction of system response is needed to maintain voltage stability within a microgrid during islanded conditions and when grid-connected, between interconnected microgrids. Distributed energy resources in a microgrid are constituted by local generation (mostly renewable and standby diesel), a grid connection and increasingly, local storage (most commonly batteries). Synchronised field data is used to validate, and improve, the results obtained from a microgrid simulation model during both steady-state and transient conditions. This microgrid simulation approach makes use of MATLAB™ and DIgSILENT™, and is shown to be useful in designing for predictable performance. With field representative results, the model developed in DIgSILENT™ can be used as a development tool allowing various control strategies and component configurations to be tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信