低带宽模型中的稀疏矩阵乘法

Chetan Gupta, J. Hirvonen, Janne H. Korhonen, Jan Studen'y, J. Suomela
{"title":"低带宽模型中的稀疏矩阵乘法","authors":"Chetan Gupta, J. Hirvonen, Janne H. Korhonen, Jan Studen'y, J. Suomela","doi":"10.1145/3490148.3538575","DOIUrl":null,"url":null,"abstract":"We study matrix multiplication in the low-bandwidth model: There are n computers, and we need to compute the product of two n × n matrices. Initially computer i knows row i of each input matrix. In one communication round each computer can send and receive one O(logn)-bit message. Eventually computer i has to output row i of the product matrix. We seek to understand the complexity of this problem in the uniformly sparse case: each row and column of each input matrix has at most d non-zeros and in the product matrix we only need to know the values of at most d elements in each row or column. This is exactly the setting that we have, e.g., when we apply matrix multiplication for triangle detection in graphs of maximum degree d. We focus on the supported setting: the structure of the matrices is known in advance; only the numerical values of nonzero elements are unknown.","PeriodicalId":112865,"journal":{"name":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Matrix Multiplication in the Low-Bandwidth Model\",\"authors\":\"Chetan Gupta, J. Hirvonen, Janne H. Korhonen, Jan Studen'y, J. Suomela\",\"doi\":\"10.1145/3490148.3538575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study matrix multiplication in the low-bandwidth model: There are n computers, and we need to compute the product of two n × n matrices. Initially computer i knows row i of each input matrix. In one communication round each computer can send and receive one O(logn)-bit message. Eventually computer i has to output row i of the product matrix. We seek to understand the complexity of this problem in the uniformly sparse case: each row and column of each input matrix has at most d non-zeros and in the product matrix we only need to know the values of at most d elements in each row or column. This is exactly the setting that we have, e.g., when we apply matrix multiplication for triangle detection in graphs of maximum degree d. We focus on the supported setting: the structure of the matrices is known in advance; only the numerical values of nonzero elements are unknown.\",\"PeriodicalId\":112865,\"journal\":{\"name\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3490148.3538575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490148.3538575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在低带宽模型中研究矩阵乘法:有n台计算机,我们需要计算两个n × n矩阵的乘积。最初,计算机i知道每个输入矩阵的第i行。在一个通信轮中,每台计算机可以发送和接收一个O(logn)位的消息。最终,计算机i必须输出乘积矩阵的第i行。我们试图在均匀稀疏情况下理解这个问题的复杂性:每个输入矩阵的每一行和每一列最多有d个非零,而在乘积矩阵中,我们只需要知道每一行或每一列最多d个元素的值。这正是我们所拥有的设置,例如,当我们在最大度为d的图中应用矩阵乘法进行三角形检测时。我们关注支持的设置:矩阵的结构是事先已知的;只有非零元素的数值是未知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Matrix Multiplication in the Low-Bandwidth Model
We study matrix multiplication in the low-bandwidth model: There are n computers, and we need to compute the product of two n × n matrices. Initially computer i knows row i of each input matrix. In one communication round each computer can send and receive one O(logn)-bit message. Eventually computer i has to output row i of the product matrix. We seek to understand the complexity of this problem in the uniformly sparse case: each row and column of each input matrix has at most d non-zeros and in the product matrix we only need to know the values of at most d elements in each row or column. This is exactly the setting that we have, e.g., when we apply matrix multiplication for triangle detection in graphs of maximum degree d. We focus on the supported setting: the structure of the matrices is known in advance; only the numerical values of nonzero elements are unknown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信