非参数循环扩散的经验似然推断

Ke-Li Xu
{"title":"非参数循环扩散的经验似然推断","authors":"Ke-Li Xu","doi":"10.2139/ssrn.1144887","DOIUrl":null,"url":null,"abstract":"This paper provides a new approach to constructing confidence intervals for nonparametric drift and diffusion functions in the continuous-time diffusion model via empirical likelihood (EL). The log EL ratios are constructed through the estimating equations satisfied by the local linear estimators. Limit theories are developed by means of increasing time span and shrinking observational intervals. The results apply to both stationary and nonstationary recurrent diffusion processes. Simulations show that for both drift and diffusion functions, the new procedure performs remarkably well in finite samples and clearly dominates the conventional method in constructing confidence intervals based on asymptotic normality. An empirical example is provided to illustrate the usefulness of the proposed method.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"99 Pt B 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Empirical Likelihood-Based Inference for Nonparametric Recurrent Diffusions\",\"authors\":\"Ke-Li Xu\",\"doi\":\"10.2139/ssrn.1144887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a new approach to constructing confidence intervals for nonparametric drift and diffusion functions in the continuous-time diffusion model via empirical likelihood (EL). The log EL ratios are constructed through the estimating equations satisfied by the local linear estimators. Limit theories are developed by means of increasing time span and shrinking observational intervals. The results apply to both stationary and nonstationary recurrent diffusion processes. Simulations show that for both drift and diffusion functions, the new procedure performs remarkably well in finite samples and clearly dominates the conventional method in constructing confidence intervals based on asymptotic normality. An empirical example is provided to illustrate the usefulness of the proposed method.\",\"PeriodicalId\":364869,\"journal\":{\"name\":\"ERN: Simulation Methods (Topic)\",\"volume\":\"99 Pt B 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Simulation Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1144887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1144887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本文提出了一种利用经验似然(EL)构造连续时间扩散模型中非参数漂移和扩散函数置信区间的新方法。通过局部线性估计量所满足的估计方程,构造了对数线性比值。极限理论是通过增加时间跨度和缩小观测间隔来发展的。结果适用于平稳和非平稳的循环扩散过程。仿真结果表明,对于漂移函数和扩散函数,新方法在有限样本下的性能都非常好,在构造基于渐近正态性的置信区间方面明显优于传统方法。最后通过一个实例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical Likelihood-Based Inference for Nonparametric Recurrent Diffusions
This paper provides a new approach to constructing confidence intervals for nonparametric drift and diffusion functions in the continuous-time diffusion model via empirical likelihood (EL). The log EL ratios are constructed through the estimating equations satisfied by the local linear estimators. Limit theories are developed by means of increasing time span and shrinking observational intervals. The results apply to both stationary and nonstationary recurrent diffusion processes. Simulations show that for both drift and diffusion functions, the new procedure performs remarkably well in finite samples and clearly dominates the conventional method in constructing confidence intervals based on asymptotic normality. An empirical example is provided to illustrate the usefulness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信