广义衰落信道下协同频谱感知的深度学习技术

Pradeep Balaji Muthukumar, Samudhyatha B., Sanjeev Gurugopinath
{"title":"广义衰落信道下协同频谱感知的深度学习技术","authors":"Pradeep Balaji Muthukumar, Samudhyatha B., Sanjeev Gurugopinath","doi":"10.1109/wispnet54241.2022.9767160","DOIUrl":null,"url":null,"abstract":"We consider the cooperative spectrum sensing problem in cognitive radios as a deep learning-based classification problem, under generalized fading scenarios. In particular, we carry out a performance comparison of well-known deep learning architectures such as deep neural networks, convolutional neural networks (CNN), long short term memory (LSTM) networks, CNN-LSTM networks and gated recurrent units (GRU). The features selected are maximum eigenvalue, energy statistic and maximum-minimum eigenvalue of the received sample correlation matrix. Through experimental studies, we show that GRU marginally outperforms other architectures, and usage of the maximum eigenvalue feature yields the best performance in terms of classification accuracy. Further, the variation in the accuracy performance of the GRU architecture with parameters such as the number of sensors, number of observations and fading parameters are discussed.","PeriodicalId":432794,"journal":{"name":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Learning Techniques for Cooperative Spectrum Sensing Under Generalized Fading Channels\",\"authors\":\"Pradeep Balaji Muthukumar, Samudhyatha B., Sanjeev Gurugopinath\",\"doi\":\"10.1109/wispnet54241.2022.9767160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the cooperative spectrum sensing problem in cognitive radios as a deep learning-based classification problem, under generalized fading scenarios. In particular, we carry out a performance comparison of well-known deep learning architectures such as deep neural networks, convolutional neural networks (CNN), long short term memory (LSTM) networks, CNN-LSTM networks and gated recurrent units (GRU). The features selected are maximum eigenvalue, energy statistic and maximum-minimum eigenvalue of the received sample correlation matrix. Through experimental studies, we show that GRU marginally outperforms other architectures, and usage of the maximum eigenvalue feature yields the best performance in terms of classification accuracy. Further, the variation in the accuracy performance of the GRU architecture with parameters such as the number of sensors, number of observations and fading parameters are discussed.\",\"PeriodicalId\":432794,\"journal\":{\"name\":\"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wispnet54241.2022.9767160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wispnet54241.2022.9767160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们认为认知无线电中的协同频谱感知问题是一个基于深度学习的分类问题。特别是,我们对众所周知的深度学习架构进行了性能比较,如深度神经网络、卷积神经网络(CNN)、长短期记忆(LSTM)网络、CNN-LSTM网络和门控循环单元(GRU)。选取的特征为接收样本相关矩阵的最大特征值、能量统计量和最大最小特征值。通过实验研究,我们表明GRU略微优于其他架构,并且使用最大特征值特征在分类精度方面产生最佳性能。进一步讨论了GRU结构精度性能随传感器个数、观测个数和衰落参数等参数的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Techniques for Cooperative Spectrum Sensing Under Generalized Fading Channels
We consider the cooperative spectrum sensing problem in cognitive radios as a deep learning-based classification problem, under generalized fading scenarios. In particular, we carry out a performance comparison of well-known deep learning architectures such as deep neural networks, convolutional neural networks (CNN), long short term memory (LSTM) networks, CNN-LSTM networks and gated recurrent units (GRU). The features selected are maximum eigenvalue, energy statistic and maximum-minimum eigenvalue of the received sample correlation matrix. Through experimental studies, we show that GRU marginally outperforms other architectures, and usage of the maximum eigenvalue feature yields the best performance in terms of classification accuracy. Further, the variation in the accuracy performance of the GRU architecture with parameters such as the number of sensors, number of observations and fading parameters are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信