基于Zernike矩的结构MRI阿尔茨海默病分类方法

Aref Shams-Baboli, M. Ezoji
{"title":"基于Zernike矩的结构MRI阿尔茨海默病分类方法","authors":"Aref Shams-Baboli, M. Ezoji","doi":"10.1109/PRIA.2017.7983061","DOIUrl":null,"url":null,"abstract":"This paper proposed a method based on Zernike moments to classify the various stages of Alzheimer's Disease(AD) from structural MRIs. The proposed method is benefited from all three orthogonal directions of MRIs i.e. Axial, Sagittal and Coronal images. Three back-propagation algorithms had been used to train the neural network with seven neurons in hidden layer to reach the best accuracy. We experimented this method with 232 MRIs from OASIS database. 70 percent of the subjects had been used for training and the other 30 percent was used to evaluate the trained network. We achieved accuracy of 86.46 percent in multiclass mode and 96.67 percent of accuracy in two class mode between HC and AD.","PeriodicalId":336066,"journal":{"name":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Zernike moment based method for classification of Alzheimer's disease from structural MRI\",\"authors\":\"Aref Shams-Baboli, M. Ezoji\",\"doi\":\"10.1109/PRIA.2017.7983061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a method based on Zernike moments to classify the various stages of Alzheimer's Disease(AD) from structural MRIs. The proposed method is benefited from all three orthogonal directions of MRIs i.e. Axial, Sagittal and Coronal images. Three back-propagation algorithms had been used to train the neural network with seven neurons in hidden layer to reach the best accuracy. We experimented this method with 232 MRIs from OASIS database. 70 percent of the subjects had been used for training and the other 30 percent was used to evaluate the trained network. We achieved accuracy of 86.46 percent in multiclass mode and 96.67 percent of accuracy in two class mode between HC and AD.\",\"PeriodicalId\":336066,\"journal\":{\"name\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIA.2017.7983061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2017.7983061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种基于Zernike矩的结构mri对阿尔茨海默病(AD)各阶段进行分类的方法。该方法利用了核磁共振成像的轴向、矢状面和冠状面三个正交方向图像。采用三种反向传播算法对隐层7个神经元的神经网络进行训练,以达到最佳精度。我们用OASIS数据库中的232张mri进行了实验。70%的受试者被用于训练,另外30%用于评估训练后的网络。在HC和AD之间的多类模式下,准确率为86.46%,两类模式下准确率为96.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Zernike moment based method for classification of Alzheimer's disease from structural MRI
This paper proposed a method based on Zernike moments to classify the various stages of Alzheimer's Disease(AD) from structural MRIs. The proposed method is benefited from all three orthogonal directions of MRIs i.e. Axial, Sagittal and Coronal images. Three back-propagation algorithms had been used to train the neural network with seven neurons in hidden layer to reach the best accuracy. We experimented this method with 232 MRIs from OASIS database. 70 percent of the subjects had been used for training and the other 30 percent was used to evaluate the trained network. We achieved accuracy of 86.46 percent in multiclass mode and 96.67 percent of accuracy in two class mode between HC and AD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信