EndoUNet:上消化道内镜解剖部位分类、病变分类和分割的统一模型

N. Manh, D. V. Hang, D. Long, Le Quang Hung, P. C. Khanh, Nguyen Thi Oanh, N. T. Thuy, D. V. Sang
{"title":"EndoUNet:上消化道内镜解剖部位分类、病变分类和分割的统一模型","authors":"N. Manh, D. V. Hang, D. Long, Le Quang Hung, P. C. Khanh, Nguyen Thi Oanh, N. T. Thuy, D. V. Sang","doi":"10.1109/KSE56063.2022.9953766","DOIUrl":null,"url":null,"abstract":"Endoscopy is one of the most effective methods for diagnosing diseases in the upper GI tract. This paper proposes a unified encoder-decoder model for dealing with three tasks simultaneously: anatomical site classification, lesion classification, and lesion segmentation. In addition, the model can learn from a training set comprised of data from multiple sources. We report results on our own large dataset of 8207 images obtained during routine upper GI endoscopic examinations. Experiments show that our model performs admirably in terms of classification accuracy and yields competitive segmentation results compared to the single-task model with the same architecture.","PeriodicalId":330865,"journal":{"name":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EndoUNet: A Unified Model for Anatomical Site Classification, Lesion Categorization and Segmentation for Upper Gastrointestinal Endoscopy\",\"authors\":\"N. Manh, D. V. Hang, D. Long, Le Quang Hung, P. C. Khanh, Nguyen Thi Oanh, N. T. Thuy, D. V. Sang\",\"doi\":\"10.1109/KSE56063.2022.9953766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Endoscopy is one of the most effective methods for diagnosing diseases in the upper GI tract. This paper proposes a unified encoder-decoder model for dealing with three tasks simultaneously: anatomical site classification, lesion classification, and lesion segmentation. In addition, the model can learn from a training set comprised of data from multiple sources. We report results on our own large dataset of 8207 images obtained during routine upper GI endoscopic examinations. Experiments show that our model performs admirably in terms of classification accuracy and yields competitive segmentation results compared to the single-task model with the same architecture.\",\"PeriodicalId\":330865,\"journal\":{\"name\":\"2022 14th International Conference on Knowledge and Systems Engineering (KSE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Knowledge and Systems Engineering (KSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE56063.2022.9953766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE56063.2022.9953766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

内镜检查是诊断上消化道疾病最有效的方法之一。本文提出了一种统一的编码器-解码器模型,用于同时处理解剖部位分类、病变分类和病变分割三个任务。此外,该模型可以从由多个来源的数据组成的训练集中学习。我们报告了我们自己在常规上消化道内镜检查中获得的8207张图像的大数据集的结果。实验表明,与具有相同架构的单任务模型相比,我们的模型在分类精度方面表现出色,并且产生了具有竞争力的分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EndoUNet: A Unified Model for Anatomical Site Classification, Lesion Categorization and Segmentation for Upper Gastrointestinal Endoscopy
Endoscopy is one of the most effective methods for diagnosing diseases in the upper GI tract. This paper proposes a unified encoder-decoder model for dealing with three tasks simultaneously: anatomical site classification, lesion classification, and lesion segmentation. In addition, the model can learn from a training set comprised of data from multiple sources. We report results on our own large dataset of 8207 images obtained during routine upper GI endoscopic examinations. Experiments show that our model performs admirably in terms of classification accuracy and yields competitive segmentation results compared to the single-task model with the same architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信