基于神经网络的自主水下航行器鲁棒自适应跟踪控制

Ye Tian, Tie-shan Li, Baobin Miao, W. Luo
{"title":"基于神经网络的自主水下航行器鲁棒自适应跟踪控制","authors":"Ye Tian, Tie-shan Li, Baobin Miao, W. Luo","doi":"10.1109/ICACI.2016.7449854","DOIUrl":null,"url":null,"abstract":"In this paper, robust adaptive tracking control is proposed for the autonomous underwater vehicle (AUV) in the presence of external disturbance. Backstepping control of the system dynamics is introduced to develop full state feedback tracking control. Using backstepping control, minimal learning parameter (MLP) and variable structure control (VSC) based techniques, the robust adaptive tracking control is presented for AUV to handle the uncertainties and improve the robustness. The proposed controller guarantees that all the close-loop signals are semi-global uniform boundedness and that the tracking errors converge to a small neighborhood of the desired trajectory. Finally, simulation studies are given to illustrate the effectiveness of the proposed algorithm.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network based robust adaptive tracking control for the automomous underwater vehicle\",\"authors\":\"Ye Tian, Tie-shan Li, Baobin Miao, W. Luo\",\"doi\":\"10.1109/ICACI.2016.7449854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, robust adaptive tracking control is proposed for the autonomous underwater vehicle (AUV) in the presence of external disturbance. Backstepping control of the system dynamics is introduced to develop full state feedback tracking control. Using backstepping control, minimal learning parameter (MLP) and variable structure control (VSC) based techniques, the robust adaptive tracking control is presented for AUV to handle the uncertainties and improve the robustness. The proposed controller guarantees that all the close-loop signals are semi-global uniform boundedness and that the tracking errors converge to a small neighborhood of the desired trajectory. Finally, simulation studies are given to illustrate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":211040,\"journal\":{\"name\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2016.7449854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对存在外部干扰的自主水下航行器(AUV),提出了一种鲁棒自适应跟踪控制方法。引入系统动力学的反步控制,发展全状态反馈跟踪控制。采用反步控制、最小学习参数(MLP)和基于变结构控制(VSC)的方法,对水下航行器进行鲁棒自适应跟踪控制,以处理不确定性,提高其鲁棒性。该控制器保证所有闭环信号是半全局均匀有界的,跟踪误差收敛到期望轨迹的一个小邻域内。最后,通过仿真实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network based robust adaptive tracking control for the automomous underwater vehicle
In this paper, robust adaptive tracking control is proposed for the autonomous underwater vehicle (AUV) in the presence of external disturbance. Backstepping control of the system dynamics is introduced to develop full state feedback tracking control. Using backstepping control, minimal learning parameter (MLP) and variable structure control (VSC) based techniques, the robust adaptive tracking control is presented for AUV to handle the uncertainties and improve the robustness. The proposed controller guarantees that all the close-loop signals are semi-global uniform boundedness and that the tracking errors converge to a small neighborhood of the desired trajectory. Finally, simulation studies are given to illustrate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信