不公平世界中的公平:来自公共公告栏的公平多方计算

A. Choudhuri, M. Green, Abhishek Jain, Gabriel Kaptchuk, Ian Miers
{"title":"不公平世界中的公平:来自公共公告栏的公平多方计算","authors":"A. Choudhuri, M. Green, Abhishek Jain, Gabriel Kaptchuk, Ian Miers","doi":"10.1145/3133956.3134092","DOIUrl":null,"url":null,"abstract":"Secure multiparty computation allows mutually distrusting parties to compute a function on their private inputs such that nothing but the function output is revealed. Achieving fairness --- that all parties learn the output or no one does -- is a long studied problem with known impossibility results in the standard model if a majority of parties are dishonest. We present a new model for achieving fairness in MPC against dishonest majority by using public bulletin boards implemented via existing infrastructure such as blockchains or Google's certificate transparency logs. We present both theoretical and practical constructions using either witness encryption or trusted hardware (such as Intel SGX). Unlike previous works that either penalize an aborting party or achieve weaker notions such as $\\Delta$-fairness, we achieve complete fairness using existing infrastructure.","PeriodicalId":191367,"journal":{"name":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Fairness in an Unfair World: Fair Multiparty Computation from Public Bulletin Boards\",\"authors\":\"A. Choudhuri, M. Green, Abhishek Jain, Gabriel Kaptchuk, Ian Miers\",\"doi\":\"10.1145/3133956.3134092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Secure multiparty computation allows mutually distrusting parties to compute a function on their private inputs such that nothing but the function output is revealed. Achieving fairness --- that all parties learn the output or no one does -- is a long studied problem with known impossibility results in the standard model if a majority of parties are dishonest. We present a new model for achieving fairness in MPC against dishonest majority by using public bulletin boards implemented via existing infrastructure such as blockchains or Google's certificate transparency logs. We present both theoretical and practical constructions using either witness encryption or trusted hardware (such as Intel SGX). Unlike previous works that either penalize an aborting party or achieve weaker notions such as $\\\\Delta$-fairness, we achieve complete fairness using existing infrastructure.\",\"PeriodicalId\":191367,\"journal\":{\"name\":\"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3133956.3134092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133956.3134092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

安全的多方计算允许互不信任的各方在他们的私有输入上计算一个函数,这样除了函数输出外什么都不会泄露。实现公平——所有参与方都知道产出,或者没有人知道产出——是一个长期研究的问题,如果大多数参与方不诚实,标准模型中就会出现已知的不可能结果。我们提出了一种新的模型,通过使用通过现有基础设施(如区块链或谷歌的证书透明度日志)实现的公共公告板,实现MPC对不诚实的大多数人的公平性。我们提出了使用证人加密或可信硬件(如Intel SGX)的理论和实践结构。不像以前的工作,要么惩罚流产方,要么实现较弱的概念,如$\Delta$-公平,我们使用现有的基础设施实现完全公平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fairness in an Unfair World: Fair Multiparty Computation from Public Bulletin Boards
Secure multiparty computation allows mutually distrusting parties to compute a function on their private inputs such that nothing but the function output is revealed. Achieving fairness --- that all parties learn the output or no one does -- is a long studied problem with known impossibility results in the standard model if a majority of parties are dishonest. We present a new model for achieving fairness in MPC against dishonest majority by using public bulletin boards implemented via existing infrastructure such as blockchains or Google's certificate transparency logs. We present both theoretical and practical constructions using either witness encryption or trusted hardware (such as Intel SGX). Unlike previous works that either penalize an aborting party or achieve weaker notions such as $\Delta$-fairness, we achieve complete fairness using existing infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信