基于加速度计的可穿戴手势识别系统的高效算法

Gorka Marques, Koldo Basterretxea
{"title":"基于加速度计的可穿戴手势识别系统的高效算法","authors":"Gorka Marques, Koldo Basterretxea","doi":"10.1109/EUC.2015.25","DOIUrl":null,"url":null,"abstract":"The rapid increase in the use of robotic systems in industrial and domestic environments makes it necessary the development of more natural interaction procedures. This paper presents the development of a user-specific hand Gesture Recognition System (GRS) based on the information of a single tri-axial accelerometer to recognize 7 different dynamic gestures for natural Human Machine Interaction (HMI). The aim of this paper is to analyze and compare different computational methods for feature extraction, dimensionality reduction, and vector classification in order to select the most suitable combination of signal processing stages that meets the performance requirements for a single-chip, wearable GRS system. These requirements are lag-free response, low size, and low power consumption while keeping high recognition accuracy. Experimental results show that the overall achievable accuracy can be up to 98% for Artificial Neural Network (ANN) and Extreme Learning Machine (ELM) predictors, and 99% for Support Vector Machines (SVM).","PeriodicalId":299207,"journal":{"name":"2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Efficient Algorithms for Accelerometer-Based Wearable Hand Gesture Recognition Systems\",\"authors\":\"Gorka Marques, Koldo Basterretxea\",\"doi\":\"10.1109/EUC.2015.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid increase in the use of robotic systems in industrial and domestic environments makes it necessary the development of more natural interaction procedures. This paper presents the development of a user-specific hand Gesture Recognition System (GRS) based on the information of a single tri-axial accelerometer to recognize 7 different dynamic gestures for natural Human Machine Interaction (HMI). The aim of this paper is to analyze and compare different computational methods for feature extraction, dimensionality reduction, and vector classification in order to select the most suitable combination of signal processing stages that meets the performance requirements for a single-chip, wearable GRS system. These requirements are lag-free response, low size, and low power consumption while keeping high recognition accuracy. Experimental results show that the overall achievable accuracy can be up to 98% for Artificial Neural Network (ANN) and Extreme Learning Machine (ELM) predictors, and 99% for Support Vector Machines (SVM).\",\"PeriodicalId\":299207,\"journal\":{\"name\":\"2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUC.2015.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUC.2015.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

机器人系统在工业和家庭环境中的应用迅速增加,因此有必要开发更自然的交互程序。本文提出了一种基于单个三轴加速度计信息的用户专用手势识别系统(GRS),用于自然人机交互(HMI)中识别7种不同的动态手势。本文的目的是分析和比较不同的特征提取、降维和矢量分类的计算方法,以选择最适合的信号处理阶段组合,满足单片可穿戴GRS系统的性能要求。这些要求是无滞后响应、小尺寸和低功耗,同时保持高识别精度。实验结果表明,人工神经网络(ANN)和极限学习机(ELM)预测器的总体可实现精度可达98%,支持向量机(SVM)预测器的总体可实现精度可达99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Algorithms for Accelerometer-Based Wearable Hand Gesture Recognition Systems
The rapid increase in the use of robotic systems in industrial and domestic environments makes it necessary the development of more natural interaction procedures. This paper presents the development of a user-specific hand Gesture Recognition System (GRS) based on the information of a single tri-axial accelerometer to recognize 7 different dynamic gestures for natural Human Machine Interaction (HMI). The aim of this paper is to analyze and compare different computational methods for feature extraction, dimensionality reduction, and vector classification in order to select the most suitable combination of signal processing stages that meets the performance requirements for a single-chip, wearable GRS system. These requirements are lag-free response, low size, and low power consumption while keeping high recognition accuracy. Experimental results show that the overall achievable accuracy can be up to 98% for Artificial Neural Network (ANN) and Extreme Learning Machine (ELM) predictors, and 99% for Support Vector Machines (SVM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信