通过焊点轮廓预测对封装工艺、设计和可靠性进行评估和优化

B. Yeung, T. Lee
{"title":"通过焊点轮廓预测对封装工艺、设计和可靠性进行评估和优化","authors":"B. Yeung, T. Lee","doi":"10.1109/ECTC.2001.927906","DOIUrl":null,"url":null,"abstract":"Solder joints are generated using a variety of methods to provide both mechanical and electrical connection for applications such as flip-chip, wafer level packaging, fine pitch, ball-grid array, and chip scale packages. Solder joint shape prediction has been incorporated as a key tool to aid in process development, wafer level and package level design and development, assembly, and reliability enhancement. This work demonstrates the application of an analytical model and the Surface Evolver software in analyzing a variety of solder processing methods and package types. Bump and joint shape prediction was conducted for the design of wafer level bumping, flip-chip assembly, and wafer level packaging. The results from the prediction methodologies are validated with experimentally measured geometries at each level of design.","PeriodicalId":340217,"journal":{"name":"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation and optimization of package processing, design, and reliability through solder joint profile prediction\",\"authors\":\"B. Yeung, T. Lee\",\"doi\":\"10.1109/ECTC.2001.927906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solder joints are generated using a variety of methods to provide both mechanical and electrical connection for applications such as flip-chip, wafer level packaging, fine pitch, ball-grid array, and chip scale packages. Solder joint shape prediction has been incorporated as a key tool to aid in process development, wafer level and package level design and development, assembly, and reliability enhancement. This work demonstrates the application of an analytical model and the Surface Evolver software in analyzing a variety of solder processing methods and package types. Bump and joint shape prediction was conducted for the design of wafer level bumping, flip-chip assembly, and wafer level packaging. The results from the prediction methodologies are validated with experimentally measured geometries at each level of design.\",\"PeriodicalId\":340217,\"journal\":{\"name\":\"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2001.927906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2001.927906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

焊点是使用各种方法生成的,为倒装芯片、晶圆级封装、细间距、球栅阵列和芯片级封装等应用提供机械和电气连接。焊点形状预测已被纳入帮助工艺开发、晶圆级和封装级设计和开发、组装和可靠性增强的关键工具。本工作演示了分析模型和Surface Evolver软件在分析各种焊料加工方法和封装类型中的应用。对晶圆级碰撞、倒装组装和晶圆级封装的设计进行了碰撞和接头形状预测。预测方法的结果在每个设计水平上都用实验测量的几何形状进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation and optimization of package processing, design, and reliability through solder joint profile prediction
Solder joints are generated using a variety of methods to provide both mechanical and electrical connection for applications such as flip-chip, wafer level packaging, fine pitch, ball-grid array, and chip scale packages. Solder joint shape prediction has been incorporated as a key tool to aid in process development, wafer level and package level design and development, assembly, and reliability enhancement. This work demonstrates the application of an analytical model and the Surface Evolver software in analyzing a variety of solder processing methods and package types. Bump and joint shape prediction was conducted for the design of wafer level bumping, flip-chip assembly, and wafer level packaging. The results from the prediction methodologies are validated with experimentally measured geometries at each level of design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信