{"title":"Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen","authors":"Sharazita Dyah, Ferian Fauzi Abdulloh, Sharazita Dyah Anggita, Feri Fauzi, Abdulloh","doi":"10.52158/jacost.v4i1.524","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is a method for processing consumer reviews. This study examines the application of the Support Vector Machine (SVM) algorithm based on PSO and Information Gain as feature selection to filter attributes as a form of optimization. Algorithm implementation in sentiment analysis is carried out by applying a test scenario to measure the level of accuracy of the several parameters used. Selection of the Information Gain feature using the top-k parameter yields an accuracy value of 85.3%. Algortima optimization applying information gain feature selection on the PSO-based SVM resulted in an optimal accuracy rate of 86.81%. The resulting increase in accuracy is 18.84% compared to the application of classic SVM without PSO-based information gain feature selection. Applying information gain feature selection on the PSO-based SVM algorithm can increase the accuracy value in the online sentiment review analysis.","PeriodicalId":151855,"journal":{"name":"Journal of Applied Computer Science and Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52158/jacost.v4i1.524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen
Sentiment analysis is a method for processing consumer reviews. This study examines the application of the Support Vector Machine (SVM) algorithm based on PSO and Information Gain as feature selection to filter attributes as a form of optimization. Algorithm implementation in sentiment analysis is carried out by applying a test scenario to measure the level of accuracy of the several parameters used. Selection of the Information Gain feature using the top-k parameter yields an accuracy value of 85.3%. Algortima optimization applying information gain feature selection on the PSO-based SVM resulted in an optimal accuracy rate of 86.81%. The resulting increase in accuracy is 18.84% compared to the application of classic SVM without PSO-based information gain feature selection. Applying information gain feature selection on the PSO-based SVM algorithm can increase the accuracy value in the online sentiment review analysis.