Sharazita Dyah, Ferian Fauzi Abdulloh, Sharazita Dyah Anggita, Feri Fauzi, Abdulloh
{"title":"Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen","authors":"Sharazita Dyah, Ferian Fauzi Abdulloh, Sharazita Dyah Anggita, Feri Fauzi, Abdulloh","doi":"10.52158/jacost.v4i1.524","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is a method for processing consumer reviews. This study examines the application of the Support Vector Machine (SVM) algorithm based on PSO and Information Gain as feature selection to filter attributes as a form of optimization. Algorithm implementation in sentiment analysis is carried out by applying a test scenario to measure the level of accuracy of the several parameters used. Selection of the Information Gain feature using the top-k parameter yields an accuracy value of 85.3%. Algortima optimization applying information gain feature selection on the PSO-based SVM resulted in an optimal accuracy rate of 86.81%. The resulting increase in accuracy is 18.84% compared to the application of classic SVM without PSO-based information gain feature selection. Applying information gain feature selection on the PSO-based SVM algorithm can increase the accuracy value in the online sentiment review analysis.","PeriodicalId":151855,"journal":{"name":"Journal of Applied Computer Science and Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52158/jacost.v4i1.524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感分析是一种处理消费者评论的方法。本研究探讨了基于粒子群算法和信息增益的支持向量机(SVM)算法作为特征选择的应用,以过滤属性作为一种优化形式。通过应用测试场景来测量所使用的几个参数的准确性水平,实现了情感分析中的算法实现。使用top-k参数选择信息增益特征,准确度值为85.3%。将信息增益特征选择应用于基于pso的SVM的算法优化,准确率达到86.81%。与不使用基于pso的信息增益特征选择的经典SVM相比,准确率提高了18.84%。将信息增益特征选择应用于基于粒子群算法的支持向量机算法,可以提高在线情感评论分析的准确率值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen
Sentiment analysis is a method for processing consumer reviews. This study examines the application of the Support Vector Machine (SVM) algorithm based on PSO and Information Gain as feature selection to filter attributes as a form of optimization. Algorithm implementation in sentiment analysis is carried out by applying a test scenario to measure the level of accuracy of the several parameters used. Selection of the Information Gain feature using the top-k parameter yields an accuracy value of 85.3%. Algortima optimization applying information gain feature selection on the PSO-based SVM resulted in an optimal accuracy rate of 86.81%. The resulting increase in accuracy is 18.84% compared to the application of classic SVM without PSO-based information gain feature selection. Applying information gain feature selection on the PSO-based SVM algorithm can increase the accuracy value in the online sentiment review analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信