基于特征和深度学习的环境声音分类

Chinnavat Jatturas, Sornsawan Chokkoedsakul, Pisitpong Devahasting Na Avudhva, Sukit Pankaew, Cherdkul Sopavanit, W. Asdornwised
{"title":"基于特征和深度学习的环境声音分类","authors":"Chinnavat Jatturas, Sornsawan Chokkoedsakul, Pisitpong Devahasting Na Avudhva, Sukit Pankaew, Cherdkul Sopavanit, W. Asdornwised","doi":"10.1109/icce-asia46551.2019.8942209","DOIUrl":null,"url":null,"abstract":"In this paper, we perform comparison techniques for environmental sound classification with multilayer perceptron (MLP) and support vector machine (SVM), and deep learning using new machine learning platforms, i.e., Scikit-Iearn and Tensorflow, respectively. For feature-based classification, principal component analysis of short-time Fourier transform is used as our feature as the front end to MLP and SVM. For deep learning-based classification, convolution+pooling layers is acting as feature extractor from the input image, while fully connected layer will act as a classifier. Our experimental results show that our proposed deep neural network (DNN) models outperform the feature-based sound classification algorithms and the original deep learning work [1].","PeriodicalId":117814,"journal":{"name":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature-based and Deep Learning-based Classification of Environmental Sound\",\"authors\":\"Chinnavat Jatturas, Sornsawan Chokkoedsakul, Pisitpong Devahasting Na Avudhva, Sukit Pankaew, Cherdkul Sopavanit, W. Asdornwised\",\"doi\":\"10.1109/icce-asia46551.2019.8942209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we perform comparison techniques for environmental sound classification with multilayer perceptron (MLP) and support vector machine (SVM), and deep learning using new machine learning platforms, i.e., Scikit-Iearn and Tensorflow, respectively. For feature-based classification, principal component analysis of short-time Fourier transform is used as our feature as the front end to MLP and SVM. For deep learning-based classification, convolution+pooling layers is acting as feature extractor from the input image, while fully connected layer will act as a classifier. Our experimental results show that our proposed deep neural network (DNN) models outperform the feature-based sound classification algorithms and the original deep learning work [1].\",\"PeriodicalId\":117814,\"journal\":{\"name\":\"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icce-asia46551.2019.8942209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icce-asia46551.2019.8942209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们分别使用多层感知器(MLP)和支持向量机(SVM)进行环境声音分类,并使用新的机器学习平台(即scikit - learn和Tensorflow)进行深度学习。在基于特征的分类中,使用短时傅里叶变换的主成分分析作为我们的特征作为MLP和SVM的前端。对于基于深度学习的分类,卷积+池化层作为输入图像的特征提取器,而全连接层作为分类器。我们的实验结果表明,我们提出的深度神经网络(DNN)模型优于基于特征的声音分类算法和原始深度学习工作[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature-based and Deep Learning-based Classification of Environmental Sound
In this paper, we perform comparison techniques for environmental sound classification with multilayer perceptron (MLP) and support vector machine (SVM), and deep learning using new machine learning platforms, i.e., Scikit-Iearn and Tensorflow, respectively. For feature-based classification, principal component analysis of short-time Fourier transform is used as our feature as the front end to MLP and SVM. For deep learning-based classification, convolution+pooling layers is acting as feature extractor from the input image, while fully connected layer will act as a classifier. Our experimental results show that our proposed deep neural network (DNN) models outperform the feature-based sound classification algorithms and the original deep learning work [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信