{"title":"基于模型的多核处理器任务分配方法研究","authors":"Juraj Feljan, Jan Carlson, T. Seceleanu","doi":"10.1109/SEAA.2012.56","DOIUrl":null,"url":null,"abstract":"Multicore technology provides a way to improve the performance of embedded systems in response to the demand in many domains for more and more complex functionality. However, increasing the number of processing units also introduces the problem of deciding which task to execute on which core in order to best utilize the platform. In this paper we present a model-based approach for automatic allocation of software tasks to the cores of a soft real-time embedded system, based on design-time performance predictions. We describe a general iterative method for finding an allocation that maximizes key performance aspects while satisfying given allocation constraints, and present an instance of this method, focusing on the particular performance aspects of timeliness and balanced computational load over time and over the cores.","PeriodicalId":298734,"journal":{"name":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Towards a Model-Based Approach for Allocating Tasks to Multicore Processors\",\"authors\":\"Juraj Feljan, Jan Carlson, T. Seceleanu\",\"doi\":\"10.1109/SEAA.2012.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multicore technology provides a way to improve the performance of embedded systems in response to the demand in many domains for more and more complex functionality. However, increasing the number of processing units also introduces the problem of deciding which task to execute on which core in order to best utilize the platform. In this paper we present a model-based approach for automatic allocation of software tasks to the cores of a soft real-time embedded system, based on design-time performance predictions. We describe a general iterative method for finding an allocation that maximizes key performance aspects while satisfying given allocation constraints, and present an instance of this method, focusing on the particular performance aspects of timeliness and balanced computational load over time and over the cores.\",\"PeriodicalId\":298734,\"journal\":{\"name\":\"2012 38th Euromicro Conference on Software Engineering and Advanced Applications\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 38th Euromicro Conference on Software Engineering and Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA.2012.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2012.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a Model-Based Approach for Allocating Tasks to Multicore Processors
Multicore technology provides a way to improve the performance of embedded systems in response to the demand in many domains for more and more complex functionality. However, increasing the number of processing units also introduces the problem of deciding which task to execute on which core in order to best utilize the platform. In this paper we present a model-based approach for automatic allocation of software tasks to the cores of a soft real-time embedded system, based on design-time performance predictions. We describe a general iterative method for finding an allocation that maximizes key performance aspects while satisfying given allocation constraints, and present an instance of this method, focusing on the particular performance aspects of timeliness and balanced computational load over time and over the cores.