多标签文档的文本分割:一种远程监督方法

Saurav Manchanda, G. Karypis
{"title":"多标签文档的文本分割:一种远程监督方法","authors":"Saurav Manchanda, G. Karypis","doi":"10.1109/ICDM.2018.00154","DOIUrl":null,"url":null,"abstract":"Segmenting text into semantically coherent segments is an important task with applications in information retrieval and text summarization. Developing accurate topical segmentation requires the availability of training data with ground truth information at the segment level. However, generating such labeled datasets, especially for applications in which the meaning of the labels is user-defined, is expensive and time-consuming. In this paper, we develop an approach that instead of using segment-level ground truth information, it instead uses the set of labels that are associated with a document and are easier to obtain as the training data essentially corresponds to a multilabel dataset. Our method, which can be thought of as an instance of distant supervision, improves upon the previous approaches by exploiting the fact that consecutive sentences in a document tend to talk about the same topic, and hence, probably belong to the same class. Experiments on the text segmentation task on a variety of datasets show that the segmentation produced by our method beats the competing approaches on four out of five datasets and performs at par on the fifth dataset. On the multilabel text classification task, our method performs at par with the competing approaches, while requiring significantly less time to estimate than the competing approaches.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Text Segmentation on Multilabel Documents: A Distant-Supervised Approach\",\"authors\":\"Saurav Manchanda, G. Karypis\",\"doi\":\"10.1109/ICDM.2018.00154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmenting text into semantically coherent segments is an important task with applications in information retrieval and text summarization. Developing accurate topical segmentation requires the availability of training data with ground truth information at the segment level. However, generating such labeled datasets, especially for applications in which the meaning of the labels is user-defined, is expensive and time-consuming. In this paper, we develop an approach that instead of using segment-level ground truth information, it instead uses the set of labels that are associated with a document and are easier to obtain as the training data essentially corresponds to a multilabel dataset. Our method, which can be thought of as an instance of distant supervision, improves upon the previous approaches by exploiting the fact that consecutive sentences in a document tend to talk about the same topic, and hence, probably belong to the same class. Experiments on the text segmentation task on a variety of datasets show that the segmentation produced by our method beats the competing approaches on four out of five datasets and performs at par on the fifth dataset. On the multilabel text classification task, our method performs at par with the competing approaches, while requiring significantly less time to estimate than the competing approaches.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

将文本分割成语义连贯的片段是信息检索和文本摘要中的一项重要任务。开发准确的主题分割需要在片段级别上获得具有真实信息的训练数据。然而,生成这样的标记数据集,特别是对于标签的含义是用户定义的应用程序,是昂贵和耗时的。在本文中,我们开发了一种方法,而不是使用段级基础真值信息,而是使用与文档相关的标签集,并且更容易获得,因为训练数据本质上对应于多标签数据集。我们的方法可以被认为是远程监督的一个实例,通过利用文档中的连续句子倾向于谈论同一个主题,因此可能属于同一个类的事实,改进了以前的方法。在各种数据集上的文本分割任务实验表明,我们的方法在五个数据集中的四个数据集上优于竞争方法,在第五个数据集上表现相同。在多标签文本分类任务上,我们的方法的性能与竞争方法相当,而所需的估计时间明显少于竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Segmentation on Multilabel Documents: A Distant-Supervised Approach
Segmenting text into semantically coherent segments is an important task with applications in information retrieval and text summarization. Developing accurate topical segmentation requires the availability of training data with ground truth information at the segment level. However, generating such labeled datasets, especially for applications in which the meaning of the labels is user-defined, is expensive and time-consuming. In this paper, we develop an approach that instead of using segment-level ground truth information, it instead uses the set of labels that are associated with a document and are easier to obtain as the training data essentially corresponds to a multilabel dataset. Our method, which can be thought of as an instance of distant supervision, improves upon the previous approaches by exploiting the fact that consecutive sentences in a document tend to talk about the same topic, and hence, probably belong to the same class. Experiments on the text segmentation task on a variety of datasets show that the segmentation produced by our method beats the competing approaches on four out of five datasets and performs at par on the fifth dataset. On the multilabel text classification task, our method performs at par with the competing approaches, while requiring significantly less time to estimate than the competing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信