基于结构约束LQR LMI准则的PMSM PI电流控制器整定

L. Pohl, Ondrej Bartik
{"title":"基于结构约束LQR LMI准则的PMSM PI电流控制器整定","authors":"L. Pohl, Ondrej Bartik","doi":"10.1109/SPEC.2018.8635836","DOIUrl":null,"url":null,"abstract":"In this paper the convex optimization technique is proposed for parameter tuning of a PI controller. Presented non-iterative two step procedure is able to optimize the coefficients of a structured output feedback matrix using the LQR cost function. It is also shown that the matrix coefficients can be linked to PI controller parameters simply by extending the state space model of the plant. The capability of this method to optimize controllers for MIMO plants is demonstrated on current control of the real PMSM.","PeriodicalId":335893,"journal":{"name":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PMSM PI Current Controller Tuning Using Structurally Constrain LQR LMI Criteria for MIMO Plants\",\"authors\":\"L. Pohl, Ondrej Bartik\",\"doi\":\"10.1109/SPEC.2018.8635836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the convex optimization technique is proposed for parameter tuning of a PI controller. Presented non-iterative two step procedure is able to optimize the coefficients of a structured output feedback matrix using the LQR cost function. It is also shown that the matrix coefficients can be linked to PI controller parameters simply by extending the state space model of the plant. The capability of this method to optimize controllers for MIMO plants is demonstrated on current control of the real PMSM.\",\"PeriodicalId\":335893,\"journal\":{\"name\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2018.8635836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2018.8635836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种用于PI控制器参数整定的凸优化技术。所提出的非迭代两步算法能够利用LQR代价函数对结构化输出反馈矩阵的系数进行优化。通过扩展对象的状态空间模型,可以简单地将矩阵系数与PI控制器参数联系起来。通过对实际永磁同步电机的电流控制,验证了该方法对MIMO对象进行控制器优化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PMSM PI Current Controller Tuning Using Structurally Constrain LQR LMI Criteria for MIMO Plants
In this paper the convex optimization technique is proposed for parameter tuning of a PI controller. Presented non-iterative two step procedure is able to optimize the coefficients of a structured output feedback matrix using the LQR cost function. It is also shown that the matrix coefficients can be linked to PI controller parameters simply by extending the state space model of the plant. The capability of this method to optimize controllers for MIMO plants is demonstrated on current control of the real PMSM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信