{"title":"谱回归:稀疏子空间学习的统一方法","authors":"Deng Cai, Xiaofei He, Jiawei Han","doi":"10.1109/ICDM.2007.89","DOIUrl":null,"url":null,"abstract":"Recently the problem of dimensionality reduction (or, subspace learning) has received a lot of interests in many fields of information processing, including data mining, information retrieval, and pattern recognition. Some popular methods include principal component analysis (PCA), linear discriminant analysis (LDA) and locality preserving projection (LPP). However, a disadvantage of all these approaches is that the learned projective functions are linear combinations of all the original features, thus it is often difficult to interpret the results. In this paper, we propose a novel dimensionality reduction framework, called Unified Sparse Subspace Learning (USSL), for learning sparse projections. USSL casts the problem of learning the projective functions into a regression framework, which facilitates the use of different kinds of regularizes. By using a L1-norm regularizer (lasso), the sparse projections can be efficiently computed. Experimental results on real world classification and clustering problems demonstrate the effectiveness of our method.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"209","resultStr":"{\"title\":\"Spectral Regression: A Unified Approach for Sparse Subspace Learning\",\"authors\":\"Deng Cai, Xiaofei He, Jiawei Han\",\"doi\":\"10.1109/ICDM.2007.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently the problem of dimensionality reduction (or, subspace learning) has received a lot of interests in many fields of information processing, including data mining, information retrieval, and pattern recognition. Some popular methods include principal component analysis (PCA), linear discriminant analysis (LDA) and locality preserving projection (LPP). However, a disadvantage of all these approaches is that the learned projective functions are linear combinations of all the original features, thus it is often difficult to interpret the results. In this paper, we propose a novel dimensionality reduction framework, called Unified Sparse Subspace Learning (USSL), for learning sparse projections. USSL casts the problem of learning the projective functions into a regression framework, which facilitates the use of different kinds of regularizes. By using a L1-norm regularizer (lasso), the sparse projections can be efficiently computed. Experimental results on real world classification and clustering problems demonstrate the effectiveness of our method.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"209\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectral Regression: A Unified Approach for Sparse Subspace Learning
Recently the problem of dimensionality reduction (or, subspace learning) has received a lot of interests in many fields of information processing, including data mining, information retrieval, and pattern recognition. Some popular methods include principal component analysis (PCA), linear discriminant analysis (LDA) and locality preserving projection (LPP). However, a disadvantage of all these approaches is that the learned projective functions are linear combinations of all the original features, thus it is often difficult to interpret the results. In this paper, we propose a novel dimensionality reduction framework, called Unified Sparse Subspace Learning (USSL), for learning sparse projections. USSL casts the problem of learning the projective functions into a regression framework, which facilitates the use of different kinds of regularizes. By using a L1-norm regularizer (lasso), the sparse projections can be efficiently computed. Experimental results on real world classification and clustering problems demonstrate the effectiveness of our method.