具有名称分配的线性时间标称μ微积分

D. Hausmann, Stefan Milius, Lutz Schröder
{"title":"具有名称分配的线性时间标称μ微积分","authors":"D. Hausmann, Stefan Milius, Lutz Schröder","doi":"10.4230/LIPIcs.MFCS.2021.58","DOIUrl":null,"url":null,"abstract":"Logics and automata models for languages over infinite alphabets, such as Freeze LTL and register automata, serve the verification of processes or documents with data. They relate tightly to formalisms over nominal sets, such as nondetermininistic orbit-finite automata (NOFAs), where names play the role of data. Reasoning problems in such formalisms tend to be computationally hard. Name-binding nominal automata models such as regular nondeterministic nominal automata (RNNAs) have been shown to be computationally more tractable. In the present paper, we introduce a linear-time fixpoint logic Bar-muTL for finite words over an infinite alphabet, which features full negation and freeze quantification via name binding. We show by a nontrivial reduction to extended regular nondeterministic nominal automata that even though Bar-muTL allows unrestricted nondeterminism and unboundedly many registers, model checking Bar-muTL over RNNAs and satisfiability checking both have elementary complexity. For example, model checking is in 2ExpSpace, more precisely in parametrized ExpSpace, effectively with the number of registers as the parameter.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"558 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Linear-Time Nominal μ-Calculus with Name Allocation\",\"authors\":\"D. Hausmann, Stefan Milius, Lutz Schröder\",\"doi\":\"10.4230/LIPIcs.MFCS.2021.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logics and automata models for languages over infinite alphabets, such as Freeze LTL and register automata, serve the verification of processes or documents with data. They relate tightly to formalisms over nominal sets, such as nondetermininistic orbit-finite automata (NOFAs), where names play the role of data. Reasoning problems in such formalisms tend to be computationally hard. Name-binding nominal automata models such as regular nondeterministic nominal automata (RNNAs) have been shown to be computationally more tractable. In the present paper, we introduce a linear-time fixpoint logic Bar-muTL for finite words over an infinite alphabet, which features full negation and freeze quantification via name binding. We show by a nontrivial reduction to extended regular nondeterministic nominal automata that even though Bar-muTL allows unrestricted nondeterminism and unboundedly many registers, model checking Bar-muTL over RNNAs and satisfiability checking both have elementary complexity. For example, model checking is in 2ExpSpace, more precisely in parametrized ExpSpace, effectively with the number of registers as the parameter.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"558 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.MFCS.2021.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2021.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于无限字母的语言的逻辑和自动机模型,如冻结LTL和注册自动机,用于验证带有数据的过程或文档。它们与名义集上的形式化紧密相关,例如非确定性轨道有限自动机(nofa),其中名称扮演数据的角色。这种形式的推理问题往往很难计算。命名绑定标称自动机模型,如规则不确定性标称自动机(rna)已被证明在计算上更易于处理。在本文中,我们引入了无限字母上有限字的线性时间不动点逻辑Bar-muTL,它具有完全否定和通过名称绑定冻结量化的特点。通过对扩展正则不确定性标称自动机的非平凡约简,我们表明,尽管Bar-muTL允许无限制的不确定性和无限多寄存器,但rna上的Bar-muTL模型检查和可满足性检查都具有初等复杂性。例如,模型检查是在2ExpSpace中进行的,更准确地说,是在参数化的ExpSpace中进行的,有效地使用寄存器的数量作为参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Linear-Time Nominal μ-Calculus with Name Allocation
Logics and automata models for languages over infinite alphabets, such as Freeze LTL and register automata, serve the verification of processes or documents with data. They relate tightly to formalisms over nominal sets, such as nondetermininistic orbit-finite automata (NOFAs), where names play the role of data. Reasoning problems in such formalisms tend to be computationally hard. Name-binding nominal automata models such as regular nondeterministic nominal automata (RNNAs) have been shown to be computationally more tractable. In the present paper, we introduce a linear-time fixpoint logic Bar-muTL for finite words over an infinite alphabet, which features full negation and freeze quantification via name binding. We show by a nontrivial reduction to extended regular nondeterministic nominal automata that even though Bar-muTL allows unrestricted nondeterminism and unboundedly many registers, model checking Bar-muTL over RNNAs and satisfiability checking both have elementary complexity. For example, model checking is in 2ExpSpace, more precisely in parametrized ExpSpace, effectively with the number of registers as the parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信