快速减载技术的发展

C. Wester, Terrence Smith, Jacobus Theron, D. McGinn
{"title":"快速减载技术的发展","authors":"C. Wester, Terrence Smith, Jacobus Theron, D. McGinn","doi":"10.1109/CPRE.2014.6799042","DOIUrl":null,"url":null,"abstract":"This paper describes a smart load shedding scheme that monitors plant loads, plant generation and generation/utility supply reserve to select the minimum number and lowest priority loads for shedding. The paper first gives an overview of industrial power system dynamics undergoing loss of supply contingencies and existing load shed practices, such as undervoltage, underfrequency, frequency rate of change or contingency based load shedding. It will examine the impact of speed of load shedding on stability. The paper goes on to describe a load shed system that continuously calculates the generation reserve available and shed-able load available in real time by acquiring analog power measurements from generators and utility supplies through IEC61850 GOOSE (Generic Object Oriented Substation Event) messaging. This fast load shed scheme uses the reliability and redundancy of modern Ethernet networks and has simplicity compared to traditional systems. Application solutions are presented and analyzed that handle the required data acquisition using communications and protection devices typically present at an industrial facility, along with means to disseminate load shedding commands with sub-cycle speed to thousands of shed-able loads. Actual performance results from such a load shed system are presented.","PeriodicalId":285252,"journal":{"name":"2014 67th Annual Conference for Protective Relay Engineers","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developments in fast load shedding\",\"authors\":\"C. Wester, Terrence Smith, Jacobus Theron, D. McGinn\",\"doi\":\"10.1109/CPRE.2014.6799042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a smart load shedding scheme that monitors plant loads, plant generation and generation/utility supply reserve to select the minimum number and lowest priority loads for shedding. The paper first gives an overview of industrial power system dynamics undergoing loss of supply contingencies and existing load shed practices, such as undervoltage, underfrequency, frequency rate of change or contingency based load shedding. It will examine the impact of speed of load shedding on stability. The paper goes on to describe a load shed system that continuously calculates the generation reserve available and shed-able load available in real time by acquiring analog power measurements from generators and utility supplies through IEC61850 GOOSE (Generic Object Oriented Substation Event) messaging. This fast load shed scheme uses the reliability and redundancy of modern Ethernet networks and has simplicity compared to traditional systems. Application solutions are presented and analyzed that handle the required data acquisition using communications and protection devices typically present at an industrial facility, along with means to disseminate load shedding commands with sub-cycle speed to thousands of shed-able loads. Actual performance results from such a load shed system are presented.\",\"PeriodicalId\":285252,\"journal\":{\"name\":\"2014 67th Annual Conference for Protective Relay Engineers\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 67th Annual Conference for Protective Relay Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPRE.2014.6799042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 67th Annual Conference for Protective Relay Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPRE.2014.6799042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种智能减载方案,该方案通过监测电厂负荷、电厂发电量和发电/公用事业储备来选择最小数量和最低优先级的负荷进行减载。本文首先概述了工业电力系统的动态经历停电事故和现有的减载实践,如欠压,欠频,频率变化率或基于应急的减载。它将检查减载速度对稳定性的影响。本文接着描述了一种通过IEC61850 GOOSE(通用面向对象变电站事件)消息传递从发电机和公用事业电源获取模拟功率测量,持续实时计算可用发电储备和可用的可减负荷的减载系统。这种快速减载方案利用了现代以太网的可靠性和冗余性,与传统系统相比具有简单性。提出并分析了应用解决方案,这些解决方案使用工业设施中通常存在的通信和保护设备来处理所需的数据采集,以及以子周期速度向数千个可剥离负载传播减载命令的方法。给出了该减载系统的实际性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developments in fast load shedding
This paper describes a smart load shedding scheme that monitors plant loads, plant generation and generation/utility supply reserve to select the minimum number and lowest priority loads for shedding. The paper first gives an overview of industrial power system dynamics undergoing loss of supply contingencies and existing load shed practices, such as undervoltage, underfrequency, frequency rate of change or contingency based load shedding. It will examine the impact of speed of load shedding on stability. The paper goes on to describe a load shed system that continuously calculates the generation reserve available and shed-able load available in real time by acquiring analog power measurements from generators and utility supplies through IEC61850 GOOSE (Generic Object Oriented Substation Event) messaging. This fast load shed scheme uses the reliability and redundancy of modern Ethernet networks and has simplicity compared to traditional systems. Application solutions are presented and analyzed that handle the required data acquisition using communications and protection devices typically present at an industrial facility, along with means to disseminate load shedding commands with sub-cycle speed to thousands of shed-able loads. Actual performance results from such a load shed system are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信