通用功率因数校正器基于带宽的分析与控制器设计

Y. Lai, K. Ho, Bo-Yuan Chen
{"title":"通用功率因数校正器基于带宽的分析与控制器设计","authors":"Y. Lai, K. Ho, Bo-Yuan Chen","doi":"10.1109/ICIT.2012.6210008","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to analyze and design the controllers of power factor corrector for universal applications. And present its implementation using field programmable gate array. For the controller design, the bandwidth of voltage loop as the input voltage changes for PFC with and without input voltage feedforward will be analyzed. It will be shown that for the PFC without input voltage feedforward, the bandwidth of voltage loop varies as the input voltage changes. And the bandwidth of voltage loop for low line input is significantly reduced as it is designed based upon the high line input model. In contrast, the bandwidth of voltage loop of PFC for high line input is increased as it is designed based upon the low line input model. For the PFC with feedforward input voltage, the bandwidth of voltage loop retains constant for both low line and high line inputs and therefore no additional gains are required for universal input applications. This analysis provides a guideline for the design of PFC for universal input applications. Moreover, to fully take the advantages of digital control, an FPGA is used for the realization of digital-controlled PFC for universal input applications. Experimental results derived from an FPGA-based digital-controlled universal PFC are presented to fully support the presented PFC.","PeriodicalId":365141,"journal":{"name":"2012 IEEE International Conference on Industrial Technology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Bandwidth-based analysis and controller design of power factor corrector for universal applications\",\"authors\":\"Y. Lai, K. Ho, Bo-Yuan Chen\",\"doi\":\"10.1109/ICIT.2012.6210008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to analyze and design the controllers of power factor corrector for universal applications. And present its implementation using field programmable gate array. For the controller design, the bandwidth of voltage loop as the input voltage changes for PFC with and without input voltage feedforward will be analyzed. It will be shown that for the PFC without input voltage feedforward, the bandwidth of voltage loop varies as the input voltage changes. And the bandwidth of voltage loop for low line input is significantly reduced as it is designed based upon the high line input model. In contrast, the bandwidth of voltage loop of PFC for high line input is increased as it is designed based upon the low line input model. For the PFC with feedforward input voltage, the bandwidth of voltage loop retains constant for both low line and high line inputs and therefore no additional gains are required for universal input applications. This analysis provides a guideline for the design of PFC for universal input applications. Moreover, to fully take the advantages of digital control, an FPGA is used for the realization of digital-controlled PFC for universal input applications. Experimental results derived from an FPGA-based digital-controlled universal PFC are presented to fully support the presented PFC.\",\"PeriodicalId\":365141,\"journal\":{\"name\":\"2012 IEEE International Conference on Industrial Technology\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Industrial Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2012.6210008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2012.6210008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文的目的是分析和设计通用功率因数校正器的控制器。并介绍了现场可编程门阵列的实现。在控制器的设计中,分析了带输入电压前馈和不带输入电压前馈的PFC在输入电压变化时电压环的带宽。结果表明,对于无输入电压前馈的PFC,电压环的带宽随输入电压的变化而变化。而低压线输入电压环由于是在高线输入模型的基础上设计的,大大降低了其带宽。而PFC的高线输入电压环由于是基于低线输入模型设计的,其带宽有所增加。对于具有前馈输入电压的PFC,电压环的带宽对于低线和高线输入都保持恒定,因此对于通用输入应用不需要额外的增益。这一分析为通用输入应用的PFC设计提供了指导。此外,为了充分发挥数字控制的优势,采用FPGA实现通用输入应用的数字控制PFC。给出了基于fpga的数字控制通用PFC的实验结果,以完全支持所提出的PFC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bandwidth-based analysis and controller design of power factor corrector for universal applications
The purpose of this paper is to analyze and design the controllers of power factor corrector for universal applications. And present its implementation using field programmable gate array. For the controller design, the bandwidth of voltage loop as the input voltage changes for PFC with and without input voltage feedforward will be analyzed. It will be shown that for the PFC without input voltage feedforward, the bandwidth of voltage loop varies as the input voltage changes. And the bandwidth of voltage loop for low line input is significantly reduced as it is designed based upon the high line input model. In contrast, the bandwidth of voltage loop of PFC for high line input is increased as it is designed based upon the low line input model. For the PFC with feedforward input voltage, the bandwidth of voltage loop retains constant for both low line and high line inputs and therefore no additional gains are required for universal input applications. This analysis provides a guideline for the design of PFC for universal input applications. Moreover, to fully take the advantages of digital control, an FPGA is used for the realization of digital-controlled PFC for universal input applications. Experimental results derived from an FPGA-based digital-controlled universal PFC are presented to fully support the presented PFC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信