M. Kühnel, E. Langlotz, I. Rahneberg, D. Dontsov, J. Probst, T. Krist, C. Braig, A. Erko
{"title":"干涉型轮廓仪,用于高精度三维测量具有大局部坡度的自由光学地形","authors":"M. Kühnel, E. Langlotz, I. Rahneberg, D. Dontsov, J. Probst, T. Krist, C. Braig, A. Erko","doi":"10.1117/12.2593700","DOIUrl":null,"url":null,"abstract":"SIOS Meβtechnik GmbH developed a universal interferometrical profilometer for 3D measurements of freeform optics topography. Due to the measurement principle using a scanning differential interferometer, no expensive and individually shaped reference optics are required. All optic shapes such as plane-,spherical-, and freeform-optics with local slopes up to 7 mrad and sizes up to 100 × 100 mm2 can be measured with sub-nanometer resolution. The capability of the setup has been proven by measurements of highly precise machined silicon mirrors (plane and spherical). A maximum of ± 3 nm peak-valley deviation between two subsequent measurements of a 30 mm × 100 mm plane mirror topography has been achieved, which proves a very good repeatability. Furthermore, measurement results show very good accordance with those from Fizeau interferometer measurements of this precision plane mirror. The maximum deviation was ± 10 nm, which is a hint to a very good accuracy of our measurements. Furthermore, form parameters such as the radii of spherical mirrors can be determined precisely due to the interferometer-based synchronous measurements of the x- and y- positions of the z- topography. A reproducibility of 1.4 × 10-4 of the radius measurements of a 29 m radius mirror was achieved, whereat the mirror was measured on different supports and in different orientations.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interferometrical profilometer for high precision 3D measurements of free-form optics topography with large local slopes\",\"authors\":\"M. Kühnel, E. Langlotz, I. Rahneberg, D. Dontsov, J. Probst, T. Krist, C. Braig, A. Erko\",\"doi\":\"10.1117/12.2593700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIOS Meβtechnik GmbH developed a universal interferometrical profilometer for 3D measurements of freeform optics topography. Due to the measurement principle using a scanning differential interferometer, no expensive and individually shaped reference optics are required. All optic shapes such as plane-,spherical-, and freeform-optics with local slopes up to 7 mrad and sizes up to 100 × 100 mm2 can be measured with sub-nanometer resolution. The capability of the setup has been proven by measurements of highly precise machined silicon mirrors (plane and spherical). A maximum of ± 3 nm peak-valley deviation between two subsequent measurements of a 30 mm × 100 mm plane mirror topography has been achieved, which proves a very good repeatability. Furthermore, measurement results show very good accordance with those from Fizeau interferometer measurements of this precision plane mirror. The maximum deviation was ± 10 nm, which is a hint to a very good accuracy of our measurements. Furthermore, form parameters such as the radii of spherical mirrors can be determined precisely due to the interferometer-based synchronous measurements of the x- and y- positions of the z- topography. A reproducibility of 1.4 × 10-4 of the radius measurements of a 29 m radius mirror was achieved, whereat the mirror was measured on different supports and in different orientations.\",\"PeriodicalId\":422212,\"journal\":{\"name\":\"Precision Optics Manufacturing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Optics Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2593700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2593700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interferometrical profilometer for high precision 3D measurements of free-form optics topography with large local slopes
SIOS Meβtechnik GmbH developed a universal interferometrical profilometer for 3D measurements of freeform optics topography. Due to the measurement principle using a scanning differential interferometer, no expensive and individually shaped reference optics are required. All optic shapes such as plane-,spherical-, and freeform-optics with local slopes up to 7 mrad and sizes up to 100 × 100 mm2 can be measured with sub-nanometer resolution. The capability of the setup has been proven by measurements of highly precise machined silicon mirrors (plane and spherical). A maximum of ± 3 nm peak-valley deviation between two subsequent measurements of a 30 mm × 100 mm plane mirror topography has been achieved, which proves a very good repeatability. Furthermore, measurement results show very good accordance with those from Fizeau interferometer measurements of this precision plane mirror. The maximum deviation was ± 10 nm, which is a hint to a very good accuracy of our measurements. Furthermore, form parameters such as the radii of spherical mirrors can be determined precisely due to the interferometer-based synchronous measurements of the x- and y- positions of the z- topography. A reproducibility of 1.4 × 10-4 of the radius measurements of a 29 m radius mirror was achieved, whereat the mirror was measured on different supports and in different orientations.