容器镜像配置及其对启动时间影响的实证研究

Martin Straesser, A. Bauer, Robert Leppich, N. Herbst, K. Chard, I. Foster, Samuel Kounev
{"title":"容器镜像配置及其对启动时间影响的实证研究","authors":"Martin Straesser, A. Bauer, Robert Leppich, N. Herbst, K. Chard, I. Foster, Samuel Kounev","doi":"10.1109/CCGrid57682.2023.00019","DOIUrl":null,"url":null,"abstract":"A core selling point of application containers is their fast start times compared to other virtualization approaches like virtual machines. Predictable and fast container start times are crucial for improving and guaranteeing the performance of containerized cloud, serverless, and edge applications. While previous work has investigated container starts, there remains a lack of understanding of how start times may vary across container configurations. We address this shortcoming by presenting and analyzing a dataset of approximately 200,000 open-source Docker Hub images featuring different image configurations (e.g., image size and exposed ports). Leveraging this dataset, we investigate the start times of containers in two environments and identify the most influential features. Our experiments show that container start times can vary between hundreds of milliseconds and tens of seconds in the same environment. Moreover, we conclude that no single dominant configuration feature determines a container's start time, and hardware and software parameters must be considered together for an accurate assessment.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Empirical Study of Container Image Configurations and Their Impact on Start Times\",\"authors\":\"Martin Straesser, A. Bauer, Robert Leppich, N. Herbst, K. Chard, I. Foster, Samuel Kounev\",\"doi\":\"10.1109/CCGrid57682.2023.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A core selling point of application containers is their fast start times compared to other virtualization approaches like virtual machines. Predictable and fast container start times are crucial for improving and guaranteeing the performance of containerized cloud, serverless, and edge applications. While previous work has investigated container starts, there remains a lack of understanding of how start times may vary across container configurations. We address this shortcoming by presenting and analyzing a dataset of approximately 200,000 open-source Docker Hub images featuring different image configurations (e.g., image size and exposed ports). Leveraging this dataset, we investigate the start times of containers in two environments and identify the most influential features. Our experiments show that container start times can vary between hundreds of milliseconds and tens of seconds in the same environment. Moreover, we conclude that no single dominant configuration feature determines a container's start time, and hardware and software parameters must be considered together for an accurate assessment.\",\"PeriodicalId\":363806,\"journal\":{\"name\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid57682.2023.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

应用程序容器的一个核心卖点是,与虚拟机等其他虚拟化方法相比,它们的启动时间更快。可预测和快速的容器启动时间对于改进和保证容器化云、无服务器和边缘应用程序的性能至关重要。虽然以前的工作已经研究了容器启动,但仍然缺乏对不同容器配置的启动时间如何变化的理解。我们通过展示和分析大约200,000个开源Docker Hub映像的数据集来解决这个缺点,这些映像具有不同的映像配置(例如,映像大小和暴露的端口)。利用这个数据集,我们研究了两种环境中容器的启动时间,并确定了最具影响力的特征。我们的实验表明,在相同的环境中,容器启动时间可能在数百毫秒到数十秒之间变化。此外,我们得出结论,没有单一的主导配置特征决定容器的启动时间,必须同时考虑硬件和软件参数才能进行准确的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Study of Container Image Configurations and Their Impact on Start Times
A core selling point of application containers is their fast start times compared to other virtualization approaches like virtual machines. Predictable and fast container start times are crucial for improving and guaranteeing the performance of containerized cloud, serverless, and edge applications. While previous work has investigated container starts, there remains a lack of understanding of how start times may vary across container configurations. We address this shortcoming by presenting and analyzing a dataset of approximately 200,000 open-source Docker Hub images featuring different image configurations (e.g., image size and exposed ports). Leveraging this dataset, we investigate the start times of containers in two environments and identify the most influential features. Our experiments show that container start times can vary between hundreds of milliseconds and tens of seconds in the same environment. Moreover, we conclude that no single dominant configuration feature determines a container's start time, and hardware and software parameters must be considered together for an accurate assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信