{"title":"基于MCMC粒子滤波的GPS多无人机跟踪精度提高","authors":"N. M. Shawky","doi":"10.4018/ijsppc.2020010101","DOIUrl":null,"url":null,"abstract":"GPS information when received from multi-unmanned aerial vehicles (UAVs), also called drones, via a ground control station can be processed for detecting and tracking estimate target position. Tracking drones based on GPS has had some issues with missed received information or received information with an error that can lead to lost tracking. The proposed algorithm, Markov chain Monte Carlo based particle filter (MCMC-PF) can be used to overcome these issues of error in received information with keeping tracks and provides continuous tracking with a higher accuracy. This is suitable for real time applications that deal with GPS receiver devices with low efficiency during tracking. Simulation results demonstrate the effectiveness and better performance when compared to conventional algorithms of the Kalman filter (KF).","PeriodicalId":344690,"journal":{"name":"Int. J. Secur. Priv. Pervasive Comput.","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy Enhancement of GPS for Tracking Multiple Drones Based on MCMC Particle Filter\",\"authors\":\"N. M. Shawky\",\"doi\":\"10.4018/ijsppc.2020010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPS information when received from multi-unmanned aerial vehicles (UAVs), also called drones, via a ground control station can be processed for detecting and tracking estimate target position. Tracking drones based on GPS has had some issues with missed received information or received information with an error that can lead to lost tracking. The proposed algorithm, Markov chain Monte Carlo based particle filter (MCMC-PF) can be used to overcome these issues of error in received information with keeping tracks and provides continuous tracking with a higher accuracy. This is suitable for real time applications that deal with GPS receiver devices with low efficiency during tracking. Simulation results demonstrate the effectiveness and better performance when compared to conventional algorithms of the Kalman filter (KF).\",\"PeriodicalId\":344690,\"journal\":{\"name\":\"Int. J. Secur. Priv. Pervasive Comput.\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Secur. Priv. Pervasive Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsppc.2020010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Secur. Priv. Pervasive Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsppc.2020010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accuracy Enhancement of GPS for Tracking Multiple Drones Based on MCMC Particle Filter
GPS information when received from multi-unmanned aerial vehicles (UAVs), also called drones, via a ground control station can be processed for detecting and tracking estimate target position. Tracking drones based on GPS has had some issues with missed received information or received information with an error that can lead to lost tracking. The proposed algorithm, Markov chain Monte Carlo based particle filter (MCMC-PF) can be used to overcome these issues of error in received information with keeping tracks and provides continuous tracking with a higher accuracy. This is suitable for real time applications that deal with GPS receiver devices with low efficiency during tracking. Simulation results demonstrate the effectiveness and better performance when compared to conventional algorithms of the Kalman filter (KF).