一种用EDON检测含噪语音活动的参数化方法

M. Hasan, Md. Ekramul Hamid
{"title":"一种用EDON检测含噪语音活动的参数化方法","authors":"M. Hasan, Md. Ekramul Hamid","doi":"10.1109/ICCITECHN.2010.5723864","DOIUrl":null,"url":null,"abstract":"The most critical and difficult problem in speech analysis is reliable discrimination among Silence, Unvoiced and Voiced speech. Several methods have been proposed for making this three levels decision and most of them need Speech Activity Detection (SAD). In this study, we propose the Estimated Degree of Noise (EDON) to adjust the threshold of speech activity. To estimate the degree of noise, a function was previously prepared using the least-squares (LS) method, from the given (true) DON and the estimated parameter of DON. This parameter is obtained from the Auto-Correlation Function (ACF) of the noisy speech on a frame basis. Issues associated with this EDON for SAD approach are discussed, and experiments are done using the TIMIT database. Experimental result shows that using EDON improves the classification performance specially voiced and silent parts and the efficiency is compared with other existing published algorithms.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A parametric formulation to Detect Speech Activity of noisy speech using EDON\",\"authors\":\"M. Hasan, Md. Ekramul Hamid\",\"doi\":\"10.1109/ICCITECHN.2010.5723864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most critical and difficult problem in speech analysis is reliable discrimination among Silence, Unvoiced and Voiced speech. Several methods have been proposed for making this three levels decision and most of them need Speech Activity Detection (SAD). In this study, we propose the Estimated Degree of Noise (EDON) to adjust the threshold of speech activity. To estimate the degree of noise, a function was previously prepared using the least-squares (LS) method, from the given (true) DON and the estimated parameter of DON. This parameter is obtained from the Auto-Correlation Function (ACF) of the noisy speech on a frame basis. Issues associated with this EDON for SAD approach are discussed, and experiments are done using the TIMIT database. Experimental result shows that using EDON improves the classification performance specially voiced and silent parts and the efficiency is compared with other existing published algorithms.\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2010.5723864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

语音分析中最关键和最困难的问题是对静音、静音和浊音的可靠区分。目前已经提出了几种三层决策方法,其中大多数都需要语音活动检测(SAD)。在这项研究中,我们提出了估计噪声度(EDON)来调整语音活动的阈值。为了估计噪声的程度,之前使用最小二乘(LS)方法,从给定的(真实)DON和DON的估计参数制备了一个函数。该参数由噪声语音在帧基础上的自相关函数(ACF)获得。讨论了与该方法相关的问题,并使用TIMIT数据库进行了实验。实验结果表明,EDON算法提高了噪声和噪声部分的分类性能,并与已有算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parametric formulation to Detect Speech Activity of noisy speech using EDON
The most critical and difficult problem in speech analysis is reliable discrimination among Silence, Unvoiced and Voiced speech. Several methods have been proposed for making this three levels decision and most of them need Speech Activity Detection (SAD). In this study, we propose the Estimated Degree of Noise (EDON) to adjust the threshold of speech activity. To estimate the degree of noise, a function was previously prepared using the least-squares (LS) method, from the given (true) DON and the estimated parameter of DON. This parameter is obtained from the Auto-Correlation Function (ACF) of the noisy speech on a frame basis. Issues associated with this EDON for SAD approach are discussed, and experiments are done using the TIMIT database. Experimental result shows that using EDON improves the classification performance specially voiced and silent parts and the efficiency is compared with other existing published algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信