SparkXS:智能和大规模流数据应用的高效访问控制

D. Preuveneers, W. Joosen
{"title":"SparkXS:智能和大规模流数据应用的高效访问控制","authors":"D. Preuveneers, W. Joosen","doi":"10.1109/IE.2015.21","DOIUrl":null,"url":null,"abstract":"The exponential data growth in intelligent environments fuelled by the Internet of Things is not only a major push behind distributed programming frameworks for big data, it also magnifies security and privacy concerns about unauthorized access to data. The huge diversity and the streaming nature of data raises the demand for new enabling technologies for scalable access control that can deal with the growing velocity, volume and variety of volatile data. This paper presents SparkXS, an attribute-based access control solution with the ability to define access control policies on streaming latent data, i.e. hidden information made explicit through data analytics, such as aggregation, transformation and filtering. Experimental results show that SparkXS can enforce access control in a horizontally scalable way with minimal performance overheads.","PeriodicalId":228285,"journal":{"name":"2015 International Conference on Intelligent Environments","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"SparkXS: Efficient Access Control for Intelligent and Large-Scale Streaming Data Applications\",\"authors\":\"D. Preuveneers, W. Joosen\",\"doi\":\"10.1109/IE.2015.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential data growth in intelligent environments fuelled by the Internet of Things is not only a major push behind distributed programming frameworks for big data, it also magnifies security and privacy concerns about unauthorized access to data. The huge diversity and the streaming nature of data raises the demand for new enabling technologies for scalable access control that can deal with the growing velocity, volume and variety of volatile data. This paper presents SparkXS, an attribute-based access control solution with the ability to define access control policies on streaming latent data, i.e. hidden information made explicit through data analytics, such as aggregation, transformation and filtering. Experimental results show that SparkXS can enforce access control in a horizontally scalable way with minimal performance overheads.\",\"PeriodicalId\":228285,\"journal\":{\"name\":\"2015 International Conference on Intelligent Environments\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Intelligent Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IE.2015.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Intelligent Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IE.2015.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在物联网的推动下,智能环境中的数据呈指数级增长,这不仅是大数据分布式编程框架背后的主要推动力,也放大了对未经授权访问数据的安全和隐私担忧。数据的巨大多样性和流性质提出了对可扩展访问控制的新支持技术的需求,这些技术可以处理不断增长的速度、数量和各种易失性数据。本文提出了SparkXS,一种基于属性的访问控制解决方案,能够对流潜数据定义访问控制策略,即通过数据分析(如聚合、转换和过滤)使隐藏信息显化。实验结果表明,SparkXS可以以最小的性能开销以水平可扩展的方式强制访问控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SparkXS: Efficient Access Control for Intelligent and Large-Scale Streaming Data Applications
The exponential data growth in intelligent environments fuelled by the Internet of Things is not only a major push behind distributed programming frameworks for big data, it also magnifies security and privacy concerns about unauthorized access to data. The huge diversity and the streaming nature of data raises the demand for new enabling technologies for scalable access control that can deal with the growing velocity, volume and variety of volatile data. This paper presents SparkXS, an attribute-based access control solution with the ability to define access control policies on streaming latent data, i.e. hidden information made explicit through data analytics, such as aggregation, transformation and filtering. Experimental results show that SparkXS can enforce access control in a horizontally scalable way with minimal performance overheads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信