SEmbedNet:基于stm32边缘设备的异位节拍分类的硬件友好CNN

You-Liang Xie, Xin-Rong Lin, Che-Wei Lin
{"title":"SEmbedNet:基于stm32边缘设备的异位节拍分类的硬件友好CNN","authors":"You-Liang Xie, Xin-Rong Lin, Che-Wei Lin","doi":"10.1109/RASSE54974.2022.9989708","DOIUrl":null,"url":null,"abstract":"This study proposed a hardware-friendly-CNN-based hardware implementation system for screening electrocardiogram (ECG) ectopic beat with an STM32 ARM microcontroller-based embedded artificial intelligence (AI) edge device. In single heartbeat classification, continuous wavelet transformation based SEmbedNet and simplified AlexNet/GoogLeNet with different pixels of 56/112 of input size were compared to choose the best and most efficient combination to implement in the hardware. Five classes of the ectopic beat are followed by the ANSI/AAMI EC57 guideline in the MIT-BIH arrhythmia database, including non-ectopic beat (N), supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), and unknown beat(Q). Besides, this study performed the model through k-fold cross-validation and choose the best model for hardware implementation. The classification result showed that using a 5-layer CNN (SEmbedNet) with an input image of pixel 56 could get better performance than an 8-layer CNN (simplified AlexNet) with a total accuracy of 99.89%. Besides, the combination of SEmbedNet with an input image size of pixel 56 and STM32 can achieve the benefits of 1.3s and 1.1 W per heartbeat in the classification task, and it only takes about 4 seconds. Moreover, a multiple-STM32 cross-validation platform was built to reduce the validation time. It can process more than a hundred thousand heartbeats in 6.4 hours.","PeriodicalId":382440,"journal":{"name":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SEmbedNet: Hardware-Friendly CNN for Ectopic Beat Classification on STM32-Based Edge Device\",\"authors\":\"You-Liang Xie, Xin-Rong Lin, Che-Wei Lin\",\"doi\":\"10.1109/RASSE54974.2022.9989708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposed a hardware-friendly-CNN-based hardware implementation system for screening electrocardiogram (ECG) ectopic beat with an STM32 ARM microcontroller-based embedded artificial intelligence (AI) edge device. In single heartbeat classification, continuous wavelet transformation based SEmbedNet and simplified AlexNet/GoogLeNet with different pixels of 56/112 of input size were compared to choose the best and most efficient combination to implement in the hardware. Five classes of the ectopic beat are followed by the ANSI/AAMI EC57 guideline in the MIT-BIH arrhythmia database, including non-ectopic beat (N), supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), and unknown beat(Q). Besides, this study performed the model through k-fold cross-validation and choose the best model for hardware implementation. The classification result showed that using a 5-layer CNN (SEmbedNet) with an input image of pixel 56 could get better performance than an 8-layer CNN (simplified AlexNet) with a total accuracy of 99.89%. Besides, the combination of SEmbedNet with an input image size of pixel 56 and STM32 can achieve the benefits of 1.3s and 1.1 W per heartbeat in the classification task, and it only takes about 4 seconds. Moreover, a multiple-STM32 cross-validation platform was built to reduce the validation time. It can process more than a hundred thousand heartbeats in 6.4 hours.\",\"PeriodicalId\":382440,\"journal\":{\"name\":\"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RASSE54974.2022.9989708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RASSE54974.2022.9989708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于STM32 ARM微控制器的嵌入式人工智能(AI)边缘设备,提出了一种硬件友好的基于cnn的心电图(ECG)异位搏筛查硬件实现系统。在单次心跳分类中,比较基于连续小波变换的SEmbedNet和简化后的AlexNet/GoogLeNet在56/112的不同像素输入大小下,选择最佳和最有效的组合在硬件上实现。MIT-BIH心律失常数据库中的ANSI/AAMI EC57指南遵循五类异位搏,包括非异位搏(N)、室上异位搏(S)、室上异位搏(V)、融合搏(F)和未知搏(Q)。此外,本研究通过k-fold交叉验证对模型进行验证,并选择最佳模型进行硬件实现。分类结果表明,使用输入图像像素为56的5层CNN (SEmbedNet)可以获得比8层CNN(简化AlexNet)更好的性能,总准确率为99.89%。此外,将输入图像尺寸为56像素的SEmbedNet与STM32相结合,在分类任务中可以实现每心跳1.3s和1.1 W的优势,只需要4秒左右的时间。建立了多stm32交叉验证平台,缩短了验证时间。它可以在6.4小时内处理超过10万次心跳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SEmbedNet: Hardware-Friendly CNN for Ectopic Beat Classification on STM32-Based Edge Device
This study proposed a hardware-friendly-CNN-based hardware implementation system for screening electrocardiogram (ECG) ectopic beat with an STM32 ARM microcontroller-based embedded artificial intelligence (AI) edge device. In single heartbeat classification, continuous wavelet transformation based SEmbedNet and simplified AlexNet/GoogLeNet with different pixels of 56/112 of input size were compared to choose the best and most efficient combination to implement in the hardware. Five classes of the ectopic beat are followed by the ANSI/AAMI EC57 guideline in the MIT-BIH arrhythmia database, including non-ectopic beat (N), supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), and unknown beat(Q). Besides, this study performed the model through k-fold cross-validation and choose the best model for hardware implementation. The classification result showed that using a 5-layer CNN (SEmbedNet) with an input image of pixel 56 could get better performance than an 8-layer CNN (simplified AlexNet) with a total accuracy of 99.89%. Besides, the combination of SEmbedNet with an input image size of pixel 56 and STM32 can achieve the benefits of 1.3s and 1.1 W per heartbeat in the classification task, and it only takes about 4 seconds. Moreover, a multiple-STM32 cross-validation platform was built to reduce the validation time. It can process more than a hundred thousand heartbeats in 6.4 hours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信