{"title":"结晶度水平和取向对半晶有机半导体中电荷输运的影响","authors":"W. Kaiser, M. Rinderle, A. Gagliardi","doi":"10.1109/NANO.2018.8626309","DOIUrl":null,"url":null,"abstract":"The unique features of organic materials such as cost-efficient solution processability are accompanied by major drawbacks in terms of low charge carrier mobility. Typical organic materials which are of interest for the use in electronic devices are usually amorphous or semi-crystalline domains and exhibit a high degree of energetic and spatial disorder. We present a kinetic Monte Carlo study of the dependence of the charge transport processes on the degree of crystallinity and orientation in conjugated polymers. We implement the crystallinity using a correlation in the energetic landscape. As a test case, we consider the conjugated polymer poly(3-hexylthiophene) (P3HT).","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the Level and Orientation of Crystallinity on Charge Transport in Semi-Crystalline Organic Semiconductors\",\"authors\":\"W. Kaiser, M. Rinderle, A. Gagliardi\",\"doi\":\"10.1109/NANO.2018.8626309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unique features of organic materials such as cost-efficient solution processability are accompanied by major drawbacks in terms of low charge carrier mobility. Typical organic materials which are of interest for the use in electronic devices are usually amorphous or semi-crystalline domains and exhibit a high degree of energetic and spatial disorder. We present a kinetic Monte Carlo study of the dependence of the charge transport processes on the degree of crystallinity and orientation in conjugated polymers. We implement the crystallinity using a correlation in the energetic landscape. As a test case, we consider the conjugated polymer poly(3-hexylthiophene) (P3HT).\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of the Level and Orientation of Crystallinity on Charge Transport in Semi-Crystalline Organic Semiconductors
The unique features of organic materials such as cost-efficient solution processability are accompanied by major drawbacks in terms of low charge carrier mobility. Typical organic materials which are of interest for the use in electronic devices are usually amorphous or semi-crystalline domains and exhibit a high degree of energetic and spatial disorder. We present a kinetic Monte Carlo study of the dependence of the charge transport processes on the degree of crystallinity and orientation in conjugated polymers. We implement the crystallinity using a correlation in the energetic landscape. As a test case, we consider the conjugated polymer poly(3-hexylthiophene) (P3HT).