{"title":"gravypack:探索一种可穿戴重力显示器,用于基于液体的沉浸式交互","authors":"Yu-Yen Chen, Yiran Lu, Ping-Hsuan Han","doi":"10.1145/3532719.3543218","DOIUrl":null,"url":null,"abstract":"Previous works have done several kinds of haptic techniques for simulating the touching experience of the virtual object. However, the feedback on the object’s weight has less been explored. This paper presents GravityPack, a wearable gravity display to simulate grabbing, holding, and releasing the virtual object in the virtual world using the liquid-based system consisting of pumps, pipes, valves, a water tank, and water packs. This system can provide a wide weight range from 110g to 1.8 kg in 40 seconds. Additionally, we design and investigate the visual feedback of weight transition for the delay time of liquid transfer to understand the feasibility of visualization by a user study. With the revealing of design consideration and implementation, the paper also shows the potential use of the liquid-based system and its possibility of the visualization technique to simulate the weight sensations.","PeriodicalId":289790,"journal":{"name":"ACM SIGGRAPH 2022 Posters","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GravityPack: Exploring a Wearable Gravity Display for Immersive Interaction Using Liquid-based System\",\"authors\":\"Yu-Yen Chen, Yiran Lu, Ping-Hsuan Han\",\"doi\":\"10.1145/3532719.3543218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous works have done several kinds of haptic techniques for simulating the touching experience of the virtual object. However, the feedback on the object’s weight has less been explored. This paper presents GravityPack, a wearable gravity display to simulate grabbing, holding, and releasing the virtual object in the virtual world using the liquid-based system consisting of pumps, pipes, valves, a water tank, and water packs. This system can provide a wide weight range from 110g to 1.8 kg in 40 seconds. Additionally, we design and investigate the visual feedback of weight transition for the delay time of liquid transfer to understand the feasibility of visualization by a user study. With the revealing of design consideration and implementation, the paper also shows the potential use of the liquid-based system and its possibility of the visualization technique to simulate the weight sensations.\",\"PeriodicalId\":289790,\"journal\":{\"name\":\"ACM SIGGRAPH 2022 Posters\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2022 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3532719.3543218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2022 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3532719.3543218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GravityPack: Exploring a Wearable Gravity Display for Immersive Interaction Using Liquid-based System
Previous works have done several kinds of haptic techniques for simulating the touching experience of the virtual object. However, the feedback on the object’s weight has less been explored. This paper presents GravityPack, a wearable gravity display to simulate grabbing, holding, and releasing the virtual object in the virtual world using the liquid-based system consisting of pumps, pipes, valves, a water tank, and water packs. This system can provide a wide weight range from 110g to 1.8 kg in 40 seconds. Additionally, we design and investigate the visual feedback of weight transition for the delay time of liquid transfer to understand the feasibility of visualization by a user study. With the revealing of design consideration and implementation, the paper also shows the potential use of the liquid-based system and its possibility of the visualization technique to simulate the weight sensations.