利用低秩矩阵补全技术在线恢复生命体征数据流中的缺失值

Shiming Yang, K. Kalpakis, C. Mackenzie, L. Stansbury, D. Stein, T. Scalea, P. Hu
{"title":"利用低秩矩阵补全技术在线恢复生命体征数据流中的缺失值","authors":"Shiming Yang, K. Kalpakis, C. Mackenzie, L. Stansbury, D. Stein, T. Scalea, P. Hu","doi":"10.1109/ICMLA.2012.55","DOIUrl":null,"url":null,"abstract":"Continuous, automated, electronic patient vital signs data are important to physicians in evaluating traumatic brain injury (TBI) patients' physiological status and reaching timely decisions for therapeutic interventions. However, missing values in the medical data streams hinder applying many standard statistical or machine learning algorithms and result in losing some episodes of clinical importance. In this paper, we present a novel approach to filling missing values in streams of vital signs data. We construct sequences of Hankel matrices from vital signs data streams, find that these matrices exhibit low-rank, and utilize low-rank matrix completion methods from compressible sensing to fill in the missing data. We demonstrate that our approach always substantially outperforms other popular fill-in methods, like k-nearest-neighbors and expectation maximization. Further, we show that our approach recovers thousands of simulated missing data for intracranial pressure, a critical stream of measurements for guiding clinical interventions and monitoring traumatic brain injuries.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Online Recovery of Missing Values in Vital Signs Data Streams Using Low-Rank Matrix Completion\",\"authors\":\"Shiming Yang, K. Kalpakis, C. Mackenzie, L. Stansbury, D. Stein, T. Scalea, P. Hu\",\"doi\":\"10.1109/ICMLA.2012.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous, automated, electronic patient vital signs data are important to physicians in evaluating traumatic brain injury (TBI) patients' physiological status and reaching timely decisions for therapeutic interventions. However, missing values in the medical data streams hinder applying many standard statistical or machine learning algorithms and result in losing some episodes of clinical importance. In this paper, we present a novel approach to filling missing values in streams of vital signs data. We construct sequences of Hankel matrices from vital signs data streams, find that these matrices exhibit low-rank, and utilize low-rank matrix completion methods from compressible sensing to fill in the missing data. We demonstrate that our approach always substantially outperforms other popular fill-in methods, like k-nearest-neighbors and expectation maximization. Further, we show that our approach recovers thousands of simulated missing data for intracranial pressure, a critical stream of measurements for guiding clinical interventions and monitoring traumatic brain injuries.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

连续的、自动化的、电子的患者生命体征数据对于医生评估创伤性脑损伤(TBI)患者的生理状态和及时做出治疗干预决策非常重要。然而,医疗数据流中的缺失值阻碍了许多标准统计或机器学习算法的应用,并导致失去一些临床重要性的事件。在本文中,我们提出了一种新的方法来填补缺失值在生命体征数据流。我们从生命体征数据流中构造了Hankel矩阵序列,发现这些矩阵具有低秩,并利用可压缩感知中的低秩矩阵补全方法来填补缺失数据。我们证明,我们的方法总是大大优于其他流行的填充方法,如k-近邻和期望最大化。此外,我们表明我们的方法恢复了数千个模拟丢失的颅内压数据,这是指导临床干预和监测创伤性脑损伤的关键测量流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Recovery of Missing Values in Vital Signs Data Streams Using Low-Rank Matrix Completion
Continuous, automated, electronic patient vital signs data are important to physicians in evaluating traumatic brain injury (TBI) patients' physiological status and reaching timely decisions for therapeutic interventions. However, missing values in the medical data streams hinder applying many standard statistical or machine learning algorithms and result in losing some episodes of clinical importance. In this paper, we present a novel approach to filling missing values in streams of vital signs data. We construct sequences of Hankel matrices from vital signs data streams, find that these matrices exhibit low-rank, and utilize low-rank matrix completion methods from compressible sensing to fill in the missing data. We demonstrate that our approach always substantially outperforms other popular fill-in methods, like k-nearest-neighbors and expectation maximization. Further, we show that our approach recovers thousands of simulated missing data for intracranial pressure, a critical stream of measurements for guiding clinical interventions and monitoring traumatic brain injuries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信