利用双侧对称性分割脑损伤

Kevin Raina, U. Yahorau, T. Schmah
{"title":"利用双侧对称性分割脑损伤","authors":"Kevin Raina, U. Yahorau, T. Schmah","doi":"10.5220/0008912101160122","DOIUrl":null,"url":null,"abstract":"Brain lesions, including stroke and tumours, have a high degree of variability in terms of location, size, intensity and form, making automatic segmentation difficult. We propose an improvement to existing segmentation methods by exploiting the bilateral quasi-symmetry of healthy brains, which breaks down when lesions are present. Specifically, we use nonlinear registration of a neuroimage to a reflected version of itself (\"reflective registration\") to determine for each voxel its homologous (corresponding) voxel in the other hemisphere. A patch around the homologous voxel is added as a set of new features to the segmentation algorithm. To evaluate this method, we implemented two different CNN-based multimodal MRI stroke lesion segmentation algorithms, and then augmented them by adding extra symmetry features using the reflective registration method described above. For each architecture, we compared the performance with and without symmetry augmentation, on the SISS Training dataset of the Ischemic Stroke Lesion Segmentation Challenge (ISLES) 2015 challenge. Using affine reflective registration improves performance over baseline, but nonlinear reflective registration gives significantly better results: an improvement in Dice coefficient of 13 percentage points over baseline for one architecture and 9 points for the other. We argue for the broad applicability of adding symmetric features to existing segmentation algorithms, specifically using nonlinear, template-free methods.","PeriodicalId":162397,"journal":{"name":"Bioimaging (Bristol. Print)","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Exploiting bilateral symmetry in brain lesion segmentation\",\"authors\":\"Kevin Raina, U. Yahorau, T. Schmah\",\"doi\":\"10.5220/0008912101160122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain lesions, including stroke and tumours, have a high degree of variability in terms of location, size, intensity and form, making automatic segmentation difficult. We propose an improvement to existing segmentation methods by exploiting the bilateral quasi-symmetry of healthy brains, which breaks down when lesions are present. Specifically, we use nonlinear registration of a neuroimage to a reflected version of itself (\\\"reflective registration\\\") to determine for each voxel its homologous (corresponding) voxel in the other hemisphere. A patch around the homologous voxel is added as a set of new features to the segmentation algorithm. To evaluate this method, we implemented two different CNN-based multimodal MRI stroke lesion segmentation algorithms, and then augmented them by adding extra symmetry features using the reflective registration method described above. For each architecture, we compared the performance with and without symmetry augmentation, on the SISS Training dataset of the Ischemic Stroke Lesion Segmentation Challenge (ISLES) 2015 challenge. Using affine reflective registration improves performance over baseline, but nonlinear reflective registration gives significantly better results: an improvement in Dice coefficient of 13 percentage points over baseline for one architecture and 9 points for the other. We argue for the broad applicability of adding symmetric features to existing segmentation algorithms, specifically using nonlinear, template-free methods.\",\"PeriodicalId\":162397,\"journal\":{\"name\":\"Bioimaging (Bristol. Print)\",\"volume\":\"260 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimaging (Bristol. Print)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0008912101160122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging (Bristol. Print)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0008912101160122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

脑损伤,包括中风和肿瘤,在位置、大小、强度和形式方面具有高度的可变性,使自动分割变得困难。我们提出了一种改进现有的分割方法,利用健康大脑的双侧准对称性,当病变存在时,它会崩溃。具体来说,我们使用神经图像到自身反射版本的非线性配准(“反射配准”)来确定每个体素在另一个半球的同源(对应)体素。在同源体素周围添加一个补丁作为分割算法的一组新特征。为了评估该方法,我们实现了两种不同的基于cnn的多模态MRI脑卒中病灶分割算法,然后通过使用上述反射配准方法添加额外的对称性特征来增强它们。对于每种架构,我们在2015年缺血性卒中病变分割挑战(ISLES)挑战的SISS训练数据集上比较了对称增强和不对称增强的性能。使用仿射反射配准可以提高基准性能,但非线性反射配准的结果要好得多:一种体系结构的Dice系数比基准提高了13个百分点,另一种体系结构的Dice系数提高了9个百分点。我们认为在现有分割算法中添加对称特征的广泛适用性,特别是使用非线性,无模板的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting bilateral symmetry in brain lesion segmentation
Brain lesions, including stroke and tumours, have a high degree of variability in terms of location, size, intensity and form, making automatic segmentation difficult. We propose an improvement to existing segmentation methods by exploiting the bilateral quasi-symmetry of healthy brains, which breaks down when lesions are present. Specifically, we use nonlinear registration of a neuroimage to a reflected version of itself ("reflective registration") to determine for each voxel its homologous (corresponding) voxel in the other hemisphere. A patch around the homologous voxel is added as a set of new features to the segmentation algorithm. To evaluate this method, we implemented two different CNN-based multimodal MRI stroke lesion segmentation algorithms, and then augmented them by adding extra symmetry features using the reflective registration method described above. For each architecture, we compared the performance with and without symmetry augmentation, on the SISS Training dataset of the Ischemic Stroke Lesion Segmentation Challenge (ISLES) 2015 challenge. Using affine reflective registration improves performance over baseline, but nonlinear reflective registration gives significantly better results: an improvement in Dice coefficient of 13 percentage points over baseline for one architecture and 9 points for the other. We argue for the broad applicability of adding symmetric features to existing segmentation algorithms, specifically using nonlinear, template-free methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信