幂零幂群的可分性

S. Majewicz, Marcos Zyman
{"title":"幂零幂群的可分性","authors":"S. Majewicz, Marcos Zyman","doi":"10.1515/9783110638387-017","DOIUrl":null,"url":null,"abstract":"In this paper we study conjugacy and subgroup separability properties in the class of nilpotent Q[x]-powered groups. Many of the techniques used to study these properties in the context of ordinary nilpotent groups carry over naturally to this more general class. Among other results, we offer a generalization of a theorem due to G. Baumslag. The generalized version states that if G is a finitely Q[x]-generated Q[x]-torsion-free nilpotent Q[x]-powered group and H is a Q[x]-isolated subgroup of G, then for any prime π ∈ Q[x], ⋂ ∞","PeriodicalId":428206,"journal":{"name":"Elementary Theory of Groups and Group Rings, and Related Topics","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separability properties of nilpotent ℚ[x]-powered groups\",\"authors\":\"S. Majewicz, Marcos Zyman\",\"doi\":\"10.1515/9783110638387-017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study conjugacy and subgroup separability properties in the class of nilpotent Q[x]-powered groups. Many of the techniques used to study these properties in the context of ordinary nilpotent groups carry over naturally to this more general class. Among other results, we offer a generalization of a theorem due to G. Baumslag. The generalized version states that if G is a finitely Q[x]-generated Q[x]-torsion-free nilpotent Q[x]-powered group and H is a Q[x]-isolated subgroup of G, then for any prime π ∈ Q[x], ⋂ ∞\",\"PeriodicalId\":428206,\"journal\":{\"name\":\"Elementary Theory of Groups and Group Rings, and Related Topics\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elementary Theory of Groups and Group Rings, and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110638387-017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementary Theory of Groups and Group Rings, and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110638387-017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究幂零Q[x]幂群的共轭性和子群可分性。在普通幂零群的背景下用于研究这些性质的许多技术自然地延续到这个更一般的类。在其他结果中,我们提供了G. Baumslag定理的推广。推广版表明,如果G是一个有限Q[x]生成的无扭幂零Q[x]幂群,H是G的一个Q[x]孤立子群,则对于任意素数π∈Q[x],
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separability properties of nilpotent ℚ[x]-powered groups
In this paper we study conjugacy and subgroup separability properties in the class of nilpotent Q[x]-powered groups. Many of the techniques used to study these properties in the context of ordinary nilpotent groups carry over naturally to this more general class. Among other results, we offer a generalization of a theorem due to G. Baumslag. The generalized version states that if G is a finitely Q[x]-generated Q[x]-torsion-free nilpotent Q[x]-powered group and H is a Q[x]-isolated subgroup of G, then for any prime π ∈ Q[x], ⋂ ∞
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信