绑定时间分析的时间逻辑方法

Rowan Davies
{"title":"绑定时间分析的时间逻辑方法","authors":"Rowan Davies","doi":"10.1109/LICS.1996.561317","DOIUrl":null,"url":null,"abstract":"The Curry-Howard isomorphism identifies proofs with typed /spl lambda/-calculus terms, and correspondingly identifies propositions with types. We show how this isomorphism can be extended to relate constructive temporal logic with binding-time analysis. In particular we show how to extend the Curry-Howard isomorphism to include the O (\"next\") operator from linear-time temporal logic. This yields the simply typed /spl lambda//sup O/-calculus which we prove to be equivalent to a multi-level binding-time analysis like those used in partial evaluation for functional programming languages. Further, we prove that normalization in /spl lambda//sup O/ can be done in an order corresponding to the times in the logic, which explains why /spl lambda//sup O/ is relevant to partial evaluation. We then extend /spl lambda//sup O/ to a small functional language, Mini-ML/sup O/, and give an operational semantics for it. Finally, we prove that this operational semantics correctly reflects the binding-times in the language, a theorem which is the functional programming analog of time-ordered normalization.","PeriodicalId":382663,"journal":{"name":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"203","resultStr":"{\"title\":\"A temporal-logic approach to binding-time analysis\",\"authors\":\"Rowan Davies\",\"doi\":\"10.1109/LICS.1996.561317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Curry-Howard isomorphism identifies proofs with typed /spl lambda/-calculus terms, and correspondingly identifies propositions with types. We show how this isomorphism can be extended to relate constructive temporal logic with binding-time analysis. In particular we show how to extend the Curry-Howard isomorphism to include the O (\\\"next\\\") operator from linear-time temporal logic. This yields the simply typed /spl lambda//sup O/-calculus which we prove to be equivalent to a multi-level binding-time analysis like those used in partial evaluation for functional programming languages. Further, we prove that normalization in /spl lambda//sup O/ can be done in an order corresponding to the times in the logic, which explains why /spl lambda//sup O/ is relevant to partial evaluation. We then extend /spl lambda//sup O/ to a small functional language, Mini-ML/sup O/, and give an operational semantics for it. Finally, we prove that this operational semantics correctly reflects the binding-times in the language, a theorem which is the functional programming analog of time-ordered normalization.\",\"PeriodicalId\":382663,\"journal\":{\"name\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"203\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1996.561317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1996.561317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 203

摘要

Curry-Howard同构用类型化/spl λ /微积分项识别证明,相应地用类型识别命题。我们展示了如何将这种同构扩展到将构造时间逻辑与绑定时间分析联系起来。特别地,我们展示了如何扩展Curry-Howard同构,以包括线性时间时间逻辑中的O(“下一个”)运算符。这就产生了简单类型的/spl lambda//sup O/-演算,我们证明它等同于函数式编程语言的部分求值中使用的多级绑定时间分析。此外,我们证明了/spl lambda//sup O/中的规范化可以按照逻辑中的时间顺序进行,这解释了为什么/spl lambda//sup O/与部分求值相关。然后,我们将/spl lambda//sup O/扩展为一种小型函数式语言Mini-ML/sup O/,并为其提供操作语义。最后,我们证明了这个操作语义正确地反映了语言中的绑定时间,这个定理是时间顺序规范化的函数式编程类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A temporal-logic approach to binding-time analysis
The Curry-Howard isomorphism identifies proofs with typed /spl lambda/-calculus terms, and correspondingly identifies propositions with types. We show how this isomorphism can be extended to relate constructive temporal logic with binding-time analysis. In particular we show how to extend the Curry-Howard isomorphism to include the O ("next") operator from linear-time temporal logic. This yields the simply typed /spl lambda//sup O/-calculus which we prove to be equivalent to a multi-level binding-time analysis like those used in partial evaluation for functional programming languages. Further, we prove that normalization in /spl lambda//sup O/ can be done in an order corresponding to the times in the logic, which explains why /spl lambda//sup O/ is relevant to partial evaluation. We then extend /spl lambda//sup O/ to a small functional language, Mini-ML/sup O/, and give an operational semantics for it. Finally, we prove that this operational semantics correctly reflects the binding-times in the language, a theorem which is the functional programming analog of time-ordered normalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信