基于RBF神经网络自适应控制算法的机械臂轨迹跟踪控制

Baojian Qin, Wenhao Zhang, Shijian Dong, Shenquan Wang, Yu-lian Jiang
{"title":"基于RBF神经网络自适应控制算法的机械臂轨迹跟踪控制","authors":"Baojian Qin, Wenhao Zhang, Shijian Dong, Shenquan Wang, Yu-lian Jiang","doi":"10.1109/ICIST55546.2022.9926773","DOIUrl":null,"url":null,"abstract":"This work investigates and contrasts two approaches for trajectory tracking control strategies for robotic operating systems: model-free adaptive algorithm and radial basis function (RBF) neural network adaptive algorithm. The tracking for high precision systems is then finished using a computational torque control approach in conjunction with a compensating controller designed based on this algorithm. The model-free adaptive control technique just employs these I/O data to construct the controller and only needs to know the input and output data of the controlled system. It is not required to know the specific model information of the controlled system. Last but not least, the experimental trajectory tracking results show that the RBF neural network can better track the trajectory of the manipulator with a relatively small tracking error.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotic Arm Trajectory Tracking Control Based on An RBF Neural Network Adaptive Control Algorithm\",\"authors\":\"Baojian Qin, Wenhao Zhang, Shijian Dong, Shenquan Wang, Yu-lian Jiang\",\"doi\":\"10.1109/ICIST55546.2022.9926773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates and contrasts two approaches for trajectory tracking control strategies for robotic operating systems: model-free adaptive algorithm and radial basis function (RBF) neural network adaptive algorithm. The tracking for high precision systems is then finished using a computational torque control approach in conjunction with a compensating controller designed based on this algorithm. The model-free adaptive control technique just employs these I/O data to construct the controller and only needs to know the input and output data of the controlled system. It is not required to know the specific model information of the controlled system. Last but not least, the experimental trajectory tracking results show that the RBF neural network can better track the trajectory of the manipulator with a relatively small tracking error.\",\"PeriodicalId\":211213,\"journal\":{\"name\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST55546.2022.9926773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究并对比了机器人操作系统轨迹跟踪控制策略的两种方法:无模型自适应算法和径向基函数(RBF)神经网络自适应算法。然后利用计算转矩控制方法结合基于该算法设计的补偿控制器完成高精度系统的跟踪。无模型自适应控制技术只是利用这些I/O数据来构造控制器,只需要知道被控系统的输入和输出数据。不需要知道被控系统的具体模型信息。最后,实验轨迹跟踪结果表明,RBF神经网络能够较好地跟踪机械臂的轨迹,且跟踪误差较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robotic Arm Trajectory Tracking Control Based on An RBF Neural Network Adaptive Control Algorithm
This work investigates and contrasts two approaches for trajectory tracking control strategies for robotic operating systems: model-free adaptive algorithm and radial basis function (RBF) neural network adaptive algorithm. The tracking for high precision systems is then finished using a computational torque control approach in conjunction with a compensating controller designed based on this algorithm. The model-free adaptive control technique just employs these I/O data to construct the controller and only needs to know the input and output data of the controlled system. It is not required to know the specific model information of the controlled system. Last but not least, the experimental trajectory tracking results show that the RBF neural network can better track the trajectory of the manipulator with a relatively small tracking error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信