似不相关回归模型分解方差-协方差矩阵的自举Bartlett平差

Oluwayemisi O Alaba, A. Lawal
{"title":"似不相关回归模型分解方差-协方差矩阵的自举Bartlett平差","authors":"Oluwayemisi O Alaba, A. Lawal","doi":"10.16929/as/2019.1891.140","DOIUrl":null,"url":null,"abstract":"We investigated hypothesis testing in Seemingly Unrelated Regression (SUR) using Log Likelihood Ratio (LLR) test. The asymptotic distribution of this statistic is well documented in literature to have substantial inaccuracy by an order of magnitude leading to the rejection of too many true null hypotheses. Bartlett adjustment of Barndorff and Blaesild and Efron’s bootstrap methods were considered to provide more accurate significance level to the distribution. Simulation results from the partitioned variance-covariance matrix showed that the lower triangular matrix performed better than the upper triangular matrix. The Bartlett method of Barndorff and Blaesild provided better significance value than the bootstrap method.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bootstrap Bartlett Adjustment on Decomposed Variance-Covariance Matrix of Seemingly Unrelated Regression Model\",\"authors\":\"Oluwayemisi O Alaba, A. Lawal\",\"doi\":\"10.16929/as/2019.1891.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated hypothesis testing in Seemingly Unrelated Regression (SUR) using Log Likelihood Ratio (LLR) test. The asymptotic distribution of this statistic is well documented in literature to have substantial inaccuracy by an order of magnitude leading to the rejection of too many true null hypotheses. Bartlett adjustment of Barndorff and Blaesild and Efron’s bootstrap methods were considered to provide more accurate significance level to the distribution. Simulation results from the partitioned variance-covariance matrix showed that the lower triangular matrix performed better than the upper triangular matrix. The Bartlett method of Barndorff and Blaesild provided better significance value than the bootstrap method.\",\"PeriodicalId\":430341,\"journal\":{\"name\":\"Afrika Statistika\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/as/2019.1891.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2019.1891.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用对数似然比(LLR)检验对看似不相关回归(SUR)的假设检验进行了研究。该统计量的渐近分布在文献中有很好的记录,具有一个数量级的实质性不准确性,导致拒绝太多真实的零假设。考虑Barndorff和Blaesild的Bartlett平差和Efron的bootstrap方法对分布提供更准确的显著性水平。对方差-协方差矩阵进行分割后的仿真结果表明,下三角矩阵优于上三角矩阵。Barndorff和Blaesild的Bartlett方法比bootstrap方法具有更好的显著性价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrap Bartlett Adjustment on Decomposed Variance-Covariance Matrix of Seemingly Unrelated Regression Model
We investigated hypothesis testing in Seemingly Unrelated Regression (SUR) using Log Likelihood Ratio (LLR) test. The asymptotic distribution of this statistic is well documented in literature to have substantial inaccuracy by an order of magnitude leading to the rejection of too many true null hypotheses. Bartlett adjustment of Barndorff and Blaesild and Efron’s bootstrap methods were considered to provide more accurate significance level to the distribution. Simulation results from the partitioned variance-covariance matrix showed that the lower triangular matrix performed better than the upper triangular matrix. The Bartlett method of Barndorff and Blaesild provided better significance value than the bootstrap method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信