在阅读理解任务中运用连贯性和内容分析来评估智能家教系统中学生总结的方法

Diego Palma, Christian M. Soto, Fernanda Rodríguez
{"title":"在阅读理解任务中运用连贯性和内容分析来评估智能家教系统中学生总结的方法","authors":"Diego Palma, Christian M. Soto, Fernanda Rodríguez","doi":"10.54941/ahfe1001173","DOIUrl":null,"url":null,"abstract":"In this paper, a discourse-based method that merges syntactic and semantic models for developing an automated system for reading comprehension assessment is proposed. For evaluating semantic content, we use the classical models from the literature: Vector Space Modelling and Latent Semantic Analysis. For evaluating the coherence of a text, we used an entity grid representation of the texts, which extracts syntactic patterns from the texts and relies on the assumption that coherent texts will have similar underlying syntactic patterns. The contribution of this work is twofold: firstly, we develop a new methodology for free-text responses in which we assess student‘s texts by semantic content and coherence. Secondly, we develop an automated system for assessing a student's reading comprehension for Spanish language using features that can be computed automatically. Experiments show that we can get accuracies of 90% when assessing text content, and of 55% - 60% when assessing text coherence.","PeriodicalId":116806,"journal":{"name":"Human Systems Engineering and Design (IHSED2021) Future Trends and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method to assess students summaries in an intelligent tutor system using coherence and content analysis in a reading comprehension task\",\"authors\":\"Diego Palma, Christian M. Soto, Fernanda Rodríguez\",\"doi\":\"10.54941/ahfe1001173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a discourse-based method that merges syntactic and semantic models for developing an automated system for reading comprehension assessment is proposed. For evaluating semantic content, we use the classical models from the literature: Vector Space Modelling and Latent Semantic Analysis. For evaluating the coherence of a text, we used an entity grid representation of the texts, which extracts syntactic patterns from the texts and relies on the assumption that coherent texts will have similar underlying syntactic patterns. The contribution of this work is twofold: firstly, we develop a new methodology for free-text responses in which we assess student‘s texts by semantic content and coherence. Secondly, we develop an automated system for assessing a student's reading comprehension for Spanish language using features that can be computed automatically. Experiments show that we can get accuracies of 90% when assessing text content, and of 55% - 60% when assessing text coherence.\",\"PeriodicalId\":116806,\"journal\":{\"name\":\"Human Systems Engineering and Design (IHSED2021) Future Trends and Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Systems Engineering and Design (IHSED2021) Future Trends and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe1001173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Systems Engineering and Design (IHSED2021) Future Trends and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1001173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种结合句法和语义模型的基于语篇的自动化阅读理解评价系统。为了评估语义内容,我们使用了文献中的经典模型:向量空间建模和潜在语义分析。为了评估文本的连贯性,我们使用了文本的实体网格表示,它从文本中提取句法模式,并依赖于连贯文本具有相似底层句法模式的假设。这项工作的贡献是双重的:首先,我们开发了一种新的自由文本响应方法,其中我们通过语义内容和连贯来评估学生的文本。其次,我们开发了一个自动化系统,用于评估学生的西班牙语阅读理解能力,使用可以自动计算的特征。实验表明,我们在评估文本内容时可以获得90%的准确率,在评估文本连贯时可以获得55% - 60%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method to assess students summaries in an intelligent tutor system using coherence and content analysis in a reading comprehension task
In this paper, a discourse-based method that merges syntactic and semantic models for developing an automated system for reading comprehension assessment is proposed. For evaluating semantic content, we use the classical models from the literature: Vector Space Modelling and Latent Semantic Analysis. For evaluating the coherence of a text, we used an entity grid representation of the texts, which extracts syntactic patterns from the texts and relies on the assumption that coherent texts will have similar underlying syntactic patterns. The contribution of this work is twofold: firstly, we develop a new methodology for free-text responses in which we assess student‘s texts by semantic content and coherence. Secondly, we develop an automated system for assessing a student's reading comprehension for Spanish language using features that can be computed automatically. Experiments show that we can get accuracies of 90% when assessing text content, and of 55% - 60% when assessing text coherence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信