基于多尺度FAST-BRISK的SAR实时制导系统

Mengjie Zhou, Guofeng Zhang, Xiaoguang Hu, Dan Sun, Jin Xiao
{"title":"基于多尺度FAST-BRISK的SAR实时制导系统","authors":"Mengjie Zhou, Guofeng Zhang, Xiaoguang Hu, Dan Sun, Jin Xiao","doi":"10.1109/ICCA.2017.8003098","DOIUrl":null,"url":null,"abstract":"In recent years, SAR (Synthetic Aperture Radar) has been widely used in the real-time guidance system. As the foundation of system, SAR image registration directly affects the guidance performance. In order to achieve the high precision and low computation, in this paper, we adopt well-known FAST (Features from Accelerated Segment Test) for feature detection and BRISK (Binary Robust Invariant Scalable Keypoints) for feature description. Then, we use Hamming distance and RANSAC (Random Sample Consensus) to match key points and estimate transformation parameters. To evaluate the performance of algorithms, three simulation experiments have been accomplished. The results and comparative analysis show a better performance of our proposed method.","PeriodicalId":379025,"journal":{"name":"2017 13th IEEE International Conference on Control & Automation (ICCA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SAR real-time guidance system based on multi-scale FAST-BRISK\",\"authors\":\"Mengjie Zhou, Guofeng Zhang, Xiaoguang Hu, Dan Sun, Jin Xiao\",\"doi\":\"10.1109/ICCA.2017.8003098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, SAR (Synthetic Aperture Radar) has been widely used in the real-time guidance system. As the foundation of system, SAR image registration directly affects the guidance performance. In order to achieve the high precision and low computation, in this paper, we adopt well-known FAST (Features from Accelerated Segment Test) for feature detection and BRISK (Binary Robust Invariant Scalable Keypoints) for feature description. Then, we use Hamming distance and RANSAC (Random Sample Consensus) to match key points and estimate transformation parameters. To evaluate the performance of algorithms, three simulation experiments have been accomplished. The results and comparative analysis show a better performance of our proposed method.\",\"PeriodicalId\":379025,\"journal\":{\"name\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2017.8003098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE International Conference on Control & Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2017.8003098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,合成孔径雷达在实时制导系统中得到了广泛的应用。作为系统的基础,SAR图像配准直接影响制导性能。为了达到高精度和低计算量,本文采用了著名的FAST (Features from Accelerated Segment Test)进行特征检测,BRISK (Binary Robust Invariant Scalable Keypoints)进行特征描述。然后,我们使用Hamming距离和RANSAC (Random Sample Consensus)来匹配关键点和估计转换参数。为了评估算法的性能,完成了三个仿真实验。结果和对比分析表明,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAR real-time guidance system based on multi-scale FAST-BRISK
In recent years, SAR (Synthetic Aperture Radar) has been widely used in the real-time guidance system. As the foundation of system, SAR image registration directly affects the guidance performance. In order to achieve the high precision and low computation, in this paper, we adopt well-known FAST (Features from Accelerated Segment Test) for feature detection and BRISK (Binary Robust Invariant Scalable Keypoints) for feature description. Then, we use Hamming distance and RANSAC (Random Sample Consensus) to match key points and estimate transformation parameters. To evaluate the performance of algorithms, three simulation experiments have been accomplished. The results and comparative analysis show a better performance of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信