继电系统中Li-Yorke混沌的持久性

M. Akhmet, M. O. Fen, A. Kashkynbayev
{"title":"继电系统中Li-Yorke混沌的持久性","authors":"M. Akhmet, M. O. Fen, A. Kashkynbayev","doi":"10.14232/EJQTDE.2017.1.72","DOIUrl":null,"url":null,"abstract":"It is rigorously proved that the chaotic dynamics of the non-smooth system with relay function is persistent even if a chaotic perturbation is applied. We consider chaos in a modified Li-Yorke sense such that infinitely many almost periodic motions take place in its basis. It is demonstrated that the system under investigation possesses countable infinity of chaotic sets of solutions. Coupled Duffing oscillators are used to show the effectiveness of our technique, and simulations that support the theoretical results are represented. Moreover, a chaos control procedure based on the Ott-Grebogi-Yorke algorithm is proposed to stabilize the unstable almost periodic motions embedded in the chaotic attractor.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Persistence of Li-Yorke chaos in systems with relay\",\"authors\":\"M. Akhmet, M. O. Fen, A. Kashkynbayev\",\"doi\":\"10.14232/EJQTDE.2017.1.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is rigorously proved that the chaotic dynamics of the non-smooth system with relay function is persistent even if a chaotic perturbation is applied. We consider chaos in a modified Li-Yorke sense such that infinitely many almost periodic motions take place in its basis. It is demonstrated that the system under investigation possesses countable infinity of chaotic sets of solutions. Coupled Duffing oscillators are used to show the effectiveness of our technique, and simulations that support the theoretical results are represented. Moreover, a chaos control procedure based on the Ott-Grebogi-Yorke algorithm is proposed to stabilize the unstable almost periodic motions embedded in the chaotic attractor.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/EJQTDE.2017.1.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/EJQTDE.2017.1.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

严格地证明了带有继电器函数的非光滑系统的混沌动力学是持久的,即使施加了混沌扰动。我们以一种修正的Li-Yorke意义来考虑混沌,使其基础上发生无限多的几乎周期性运动。证明了所研究的系统具有可数无穷个混沌解集。耦合Duffing振荡器被用来证明我们的技术的有效性,并模拟支持理论结果。此外,提出了一种基于Ott-Grebogi-Yorke算法的混沌控制程序,以稳定嵌入混沌吸引子中的不稳定概周期运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistence of Li-Yorke chaos in systems with relay
It is rigorously proved that the chaotic dynamics of the non-smooth system with relay function is persistent even if a chaotic perturbation is applied. We consider chaos in a modified Li-Yorke sense such that infinitely many almost periodic motions take place in its basis. It is demonstrated that the system under investigation possesses countable infinity of chaotic sets of solutions. Coupled Duffing oscillators are used to show the effectiveness of our technique, and simulations that support the theoretical results are represented. Moreover, a chaos control procedure based on the Ott-Grebogi-Yorke algorithm is proposed to stabilize the unstable almost periodic motions embedded in the chaotic attractor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信