{"title":"利用附加霍尔传感器栅格增大便携式显示器的输入空间","authors":"Rong-Hao Liang","doi":"10.1145/2508468.2508470","DOIUrl":null,"url":null,"abstract":"Since handheld and wearable displays are highly mobile, various applications are enabled to enrich our daily life. In addition to displaying high-fidelity information, these devices also support natural and effective user interactions by exploiting the capability of various embedded sensors. Nonetheless, the set of built-in sensors has limitations. Add-on sensor technologies, therefore, are needed. This work chooses to exploit magnetism as an additional channel of user input. The author first explains the reasons of developing the add-on magnetic field sensing technology based on neodymium magnets and the analog Hall-sensor grid. Then, the augmented input space is showcased through two instances. 1) For handheld displays, the sensor extends the object tracking capability to the near-surface 3D space by simply attaching it to the back of devices. 2) For wearable displays, the sensor enables private and rich-haptic 2D input by wearing it on user's fingernails. Limitations and possible research directions of this approach are highlighted in the end of paper.","PeriodicalId":196872,"journal":{"name":"Adjunct Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Augmenting the input space of portable displays using add-on hall-sensor grid\",\"authors\":\"Rong-Hao Liang\",\"doi\":\"10.1145/2508468.2508470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since handheld and wearable displays are highly mobile, various applications are enabled to enrich our daily life. In addition to displaying high-fidelity information, these devices also support natural and effective user interactions by exploiting the capability of various embedded sensors. Nonetheless, the set of built-in sensors has limitations. Add-on sensor technologies, therefore, are needed. This work chooses to exploit magnetism as an additional channel of user input. The author first explains the reasons of developing the add-on magnetic field sensing technology based on neodymium magnets and the analog Hall-sensor grid. Then, the augmented input space is showcased through two instances. 1) For handheld displays, the sensor extends the object tracking capability to the near-surface 3D space by simply attaching it to the back of devices. 2) For wearable displays, the sensor enables private and rich-haptic 2D input by wearing it on user's fingernails. Limitations and possible research directions of this approach are highlighted in the end of paper.\",\"PeriodicalId\":196872,\"journal\":{\"name\":\"Adjunct Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2508468.2508470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2508468.2508470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Augmenting the input space of portable displays using add-on hall-sensor grid
Since handheld and wearable displays are highly mobile, various applications are enabled to enrich our daily life. In addition to displaying high-fidelity information, these devices also support natural and effective user interactions by exploiting the capability of various embedded sensors. Nonetheless, the set of built-in sensors has limitations. Add-on sensor technologies, therefore, are needed. This work chooses to exploit magnetism as an additional channel of user input. The author first explains the reasons of developing the add-on magnetic field sensing technology based on neodymium magnets and the analog Hall-sensor grid. Then, the augmented input space is showcased through two instances. 1) For handheld displays, the sensor extends the object tracking capability to the near-surface 3D space by simply attaching it to the back of devices. 2) For wearable displays, the sensor enables private and rich-haptic 2D input by wearing it on user's fingernails. Limitations and possible research directions of this approach are highlighted in the end of paper.