基于眼动追踪的图像分类决策支持系统评价

Holly Zelnio, Mary E. Frame, Mary E. Fendley
{"title":"基于眼动追踪的图像分类决策支持系统评价","authors":"Holly Zelnio, Mary E. Frame, Mary E. Fendley","doi":"10.1109/ICHMS49158.2020.9209524","DOIUrl":null,"url":null,"abstract":"This research project examines the effectiveness of Decision Support Systems (DSS) to improve object classification performance of imagery from three different image sensor types. Eye tracking analyses provide evidence that individuals are able to focus on information that is most crucial to classification while ignoring information that is less diagnostic within a DSS, without jeopardizing performance. This analysis augments previous work on this problem that addressed accuracy, confidence, and trust.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Eye Tracking to Evaluate Decision Support Systems of Imagery Classification\",\"authors\":\"Holly Zelnio, Mary E. Frame, Mary E. Fendley\",\"doi\":\"10.1109/ICHMS49158.2020.9209524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research project examines the effectiveness of Decision Support Systems (DSS) to improve object classification performance of imagery from three different image sensor types. Eye tracking analyses provide evidence that individuals are able to focus on information that is most crucial to classification while ignoring information that is less diagnostic within a DSS, without jeopardizing performance. This analysis augments previous work on this problem that addressed accuracy, confidence, and trust.\",\"PeriodicalId\":132917,\"journal\":{\"name\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHMS49158.2020.9209524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究项目探讨决策支持系统(DSS)的有效性,以提高从三种不同的图像传感器类型的图像的目标分类性能。眼动追踪分析提供的证据表明,在DSS中,个体能够专注于对分类最重要的信息,而忽略那些不太具有诊断性的信息,而不会损害表现。这一分析增强了先前关于准确性、信心和信任问题的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Eye Tracking to Evaluate Decision Support Systems of Imagery Classification
This research project examines the effectiveness of Decision Support Systems (DSS) to improve object classification performance of imagery from three different image sensor types. Eye tracking analyses provide evidence that individuals are able to focus on information that is most crucial to classification while ignoring information that is less diagnostic within a DSS, without jeopardizing performance. This analysis augments previous work on this problem that addressed accuracy, confidence, and trust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信