从自我中心视觉估计头部运动

Satoshi Tsutsui, S. Bambach, David J. Crandall, Chen Yu
{"title":"从自我中心视觉估计头部运动","authors":"Satoshi Tsutsui, S. Bambach, David J. Crandall, Chen Yu","doi":"10.1145/3242969.3242982","DOIUrl":null,"url":null,"abstract":"The recent availability of lightweight, wearable cameras allows for collecting video data from a \"first-person' perspective, capturing the visual world of the wearer in everyday interactive contexts. In this paper, we investigate how to exploit egocentric vision to infer multimodal behaviors from people wearing head-mounted cameras. More specifically, we estimate head (camera) motion from egocentric video, which can be further used to infer non-verbal behaviors such as head turns and nodding in multimodal interactions. We propose several approaches based on Convolutional Neural Networks (CNNs) that combine raw images and optical flow fields to learn to distinguish regions with optical flow caused by global ego-motion from those caused by other motion in a scene. Our results suggest that CNNs do not directly learn useful visual features with end-to-end training from raw images alone; instead, a better approach is to first extract optical flow explicitly and then train CNNs to integrate optical flow and visual information.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimating Head Motion from Egocentric Vision\",\"authors\":\"Satoshi Tsutsui, S. Bambach, David J. Crandall, Chen Yu\",\"doi\":\"10.1145/3242969.3242982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent availability of lightweight, wearable cameras allows for collecting video data from a \\\"first-person' perspective, capturing the visual world of the wearer in everyday interactive contexts. In this paper, we investigate how to exploit egocentric vision to infer multimodal behaviors from people wearing head-mounted cameras. More specifically, we estimate head (camera) motion from egocentric video, which can be further used to infer non-verbal behaviors such as head turns and nodding in multimodal interactions. We propose several approaches based on Convolutional Neural Networks (CNNs) that combine raw images and optical flow fields to learn to distinguish regions with optical flow caused by global ego-motion from those caused by other motion in a scene. Our results suggest that CNNs do not directly learn useful visual features with end-to-end training from raw images alone; instead, a better approach is to first extract optical flow explicitly and then train CNNs to integrate optical flow and visual information.\",\"PeriodicalId\":308751,\"journal\":{\"name\":\"Proceedings of the 20th ACM International Conference on Multimodal Interaction\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3242969.3242982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3242982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近出现的轻型可穿戴相机可以从“第一人称”视角收集视频数据,捕捉佩戴者在日常互动环境中的视觉世界。在本文中,我们研究了如何利用自我中心视觉来推断戴着头戴式相机的人的多模态行为。更具体地说,我们从以自我为中心的视频中估计头部(摄像机)的运动,这可以进一步用于推断多模态交互中的非语言行为,如头部转动和点头。我们提出了几种基于卷积神经网络(cnn)的方法,将原始图像和光流场结合起来,学习区分场景中由全局自我运动引起的光流区域和光流区域。我们的研究结果表明,cnn并不直接从原始图像中学习有用的视觉特征;相反,更好的方法是首先明确地提取光流,然后训练cnn来整合光流和视觉信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Head Motion from Egocentric Vision
The recent availability of lightweight, wearable cameras allows for collecting video data from a "first-person' perspective, capturing the visual world of the wearer in everyday interactive contexts. In this paper, we investigate how to exploit egocentric vision to infer multimodal behaviors from people wearing head-mounted cameras. More specifically, we estimate head (camera) motion from egocentric video, which can be further used to infer non-verbal behaviors such as head turns and nodding in multimodal interactions. We propose several approaches based on Convolutional Neural Networks (CNNs) that combine raw images and optical flow fields to learn to distinguish regions with optical flow caused by global ego-motion from those caused by other motion in a scene. Our results suggest that CNNs do not directly learn useful visual features with end-to-end training from raw images alone; instead, a better approach is to first extract optical flow explicitly and then train CNNs to integrate optical flow and visual information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信