基于卡尔曼滤波、均值移位算法和时空能量特征的视觉目标跟踪

Amir Ghahremani, A. Mousavinia
{"title":"基于卡尔曼滤波、均值移位算法和时空能量特征的视觉目标跟踪","authors":"Amir Ghahremani, A. Mousavinia","doi":"10.1109/ICCKE.2014.6993433","DOIUrl":null,"url":null,"abstract":"Many multimedia applications need to track moving objects. Consequently, designing a robust tracking system is a vital requirement for them. This paper proposes a new method for visual object tracking, which uses the mean shift tracking algorithm to derive the most similar target candidate to the target model. Bhattacharyya coefficient is employed to determine the similarities. Target's structure is represented by multiscale oriented energy feature set, which presents extra robustness by including dynamic information of the pixels. Likewise, the Kalman filtering framework is employed to predict the location of the moving objects. Experimental results demonstrate the proposed algorithm's superior performance, chiefly when encountering with the full occlusion situation.","PeriodicalId":152540,"journal":{"name":"2014 4th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Visual object tracking using Kalman filter, mean shift algorithm and spatiotemporal oriented energy features\",\"authors\":\"Amir Ghahremani, A. Mousavinia\",\"doi\":\"10.1109/ICCKE.2014.6993433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many multimedia applications need to track moving objects. Consequently, designing a robust tracking system is a vital requirement for them. This paper proposes a new method for visual object tracking, which uses the mean shift tracking algorithm to derive the most similar target candidate to the target model. Bhattacharyya coefficient is employed to determine the similarities. Target's structure is represented by multiscale oriented energy feature set, which presents extra robustness by including dynamic information of the pixels. Likewise, the Kalman filtering framework is employed to predict the location of the moving objects. Experimental results demonstrate the proposed algorithm's superior performance, chiefly when encountering with the full occlusion situation.\",\"PeriodicalId\":152540,\"journal\":{\"name\":\"2014 4th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 4th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE.2014.6993433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2014.6993433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

许多多媒体应用程序需要跟踪移动的物体。因此,设计一个强大的跟踪系统对他们来说是一个至关重要的要求。本文提出了一种新的视觉目标跟踪方法,该方法利用均值偏移跟踪算法推导出与目标模型最相似的候选目标。采用Bhattacharyya系数来确定相似性。目标结构由多尺度定向能量特征集表示,通过包含像素的动态信息,增强了鲁棒性。同样,卡尔曼滤波框架被用来预测运动物体的位置。实验结果证明了该算法的优越性能,特别是在遇到完全遮挡情况时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual object tracking using Kalman filter, mean shift algorithm and spatiotemporal oriented energy features
Many multimedia applications need to track moving objects. Consequently, designing a robust tracking system is a vital requirement for them. This paper proposes a new method for visual object tracking, which uses the mean shift tracking algorithm to derive the most similar target candidate to the target model. Bhattacharyya coefficient is employed to determine the similarities. Target's structure is represented by multiscale oriented energy feature set, which presents extra robustness by including dynamic information of the pixels. Likewise, the Kalman filtering framework is employed to predict the location of the moving objects. Experimental results demonstrate the proposed algorithm's superior performance, chiefly when encountering with the full occlusion situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信