用于识别FACS的Haar特性

J. Whitehill, C. Omlin
{"title":"用于识别FACS的Haar特性","authors":"J. Whitehill, C. Omlin","doi":"10.1109/FGR.2006.61","DOIUrl":null,"url":null,"abstract":"We examined the effectiveness of using Haar features and the Adaboost boosting algorithm for FACS action unit (AU) recognition. We evaluated both recognition accuracy and processing time of this new approach compared to the state-of-the-art method of classifying Gabor responses with support vector machines. Empirical results on the Cohn-Kanade facial expression database showed that the Haar+Adaboost method yields AU recognition rates comparable to those of the Gabor+SVM method but operates at least two orders of magnitude more quickly","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"193","resultStr":"{\"title\":\"Haar features for FACS AU recognition\",\"authors\":\"J. Whitehill, C. Omlin\",\"doi\":\"10.1109/FGR.2006.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examined the effectiveness of using Haar features and the Adaboost boosting algorithm for FACS action unit (AU) recognition. We evaluated both recognition accuracy and processing time of this new approach compared to the state-of-the-art method of classifying Gabor responses with support vector machines. Empirical results on the Cohn-Kanade facial expression database showed that the Haar+Adaboost method yields AU recognition rates comparable to those of the Gabor+SVM method but operates at least two orders of magnitude more quickly\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"193\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 193

摘要

我们研究了使用Haar特征和Adaboost增强算法进行FACS动作单元(AU)识别的有效性。与支持向量机分类Gabor响应的最新方法相比,我们评估了这种新方法的识别精度和处理时间。Cohn-Kanade面部表情数据库的实证结果表明,Haar+Adaboost方法产生的AU识别率与Gabor+SVM方法相当,但操作速度至少快两个数量级
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Haar features for FACS AU recognition
We examined the effectiveness of using Haar features and the Adaboost boosting algorithm for FACS action unit (AU) recognition. We evaluated both recognition accuracy and processing time of this new approach compared to the state-of-the-art method of classifying Gabor responses with support vector machines. Empirical results on the Cohn-Kanade facial expression database showed that the Haar+Adaboost method yields AU recognition rates comparable to those of the Gabor+SVM method but operates at least two orders of magnitude more quickly
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信