求实解分量上点的一种方法的数值和几何性质

Wenyuan Wu, G. Reid, Yong Feng
{"title":"求实解分量上点的一种方法的数值和几何性质","authors":"Wenyuan Wu, G. Reid, Yong Feng","doi":"10.1145/2631948.2631969","DOIUrl":null,"url":null,"abstract":"We consider a critical point method developed in our earlier work for finding certain solution (witness) points on real solution components of real polynomial systems of equations. The method finds points that are critical points of the distance from a plane to the component with the requirement that certain regularity conditions are satisfied. In this paper we analyze the numerical stability of the method. We aim to find at least one well conditioned witness point on each connected component by using perturbation, path tracking and projection techniques. An optimal-direction strategy and an adaptive step size control strategy for path following on high dimensional components are given.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and geometric properties of a method for finding points on real solution components\",\"authors\":\"Wenyuan Wu, G. Reid, Yong Feng\",\"doi\":\"10.1145/2631948.2631969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a critical point method developed in our earlier work for finding certain solution (witness) points on real solution components of real polynomial systems of equations. The method finds points that are critical points of the distance from a plane to the component with the requirement that certain regularity conditions are satisfied. In this paper we analyze the numerical stability of the method. We aim to find at least one well conditioned witness point on each connected component by using perturbation, path tracking and projection techniques. An optimal-direction strategy and an adaptive step size control strategy for path following on high dimensional components are given.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2631948.2631969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631948.2631969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在我们早期的工作中发展的一种临界点方法,用于寻找实多项式方程组的实解分量上的某些解(见证)点。该方法在满足一定规则性条件的前提下,寻找平面到构件距离的临界点。本文分析了该方法的数值稳定性。我们的目标是通过使用摄动、路径跟踪和投影技术在每个连接的组件上找到至少一个条件良好的见证点。给出了高维分量路径跟踪的最优方向策略和自适应步长控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical and geometric properties of a method for finding points on real solution components
We consider a critical point method developed in our earlier work for finding certain solution (witness) points on real solution components of real polynomial systems of equations. The method finds points that are critical points of the distance from a plane to the component with the requirement that certain regularity conditions are satisfied. In this paper we analyze the numerical stability of the method. We aim to find at least one well conditioned witness point on each connected component by using perturbation, path tracking and projection techniques. An optimal-direction strategy and an adaptive step size control strategy for path following on high dimensional components are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信